向量值形式

L. Tu
{"title":"向量值形式","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.20","DOIUrl":null,"url":null,"abstract":"This chapter studies vector-valued forms. Ordinary differential forms have values in the field of real numbers. This chapter allows differential forms to take values in a vector space. When the vector space has a multiplication, for example, if it is a Lie algebra or a matrix group, the vector-valued forms will have a corresponding product. Vector-valued forms have become indispensable in differential geometry, since connections and curvature on a principal bundle are vector-valued forms. All the vector spaces will be real vector spaces. A k-covector on a vector space T is an alternating k-linear function. If V is another vector space, a V-valued k-covector on T is an alternating k-linear function.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector-Valued Forms\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter studies vector-valued forms. Ordinary differential forms have values in the field of real numbers. This chapter allows differential forms to take values in a vector space. When the vector space has a multiplication, for example, if it is a Lie algebra or a matrix group, the vector-valued forms will have a corresponding product. Vector-valued forms have become indispensable in differential geometry, since connections and curvature on a principal bundle are vector-valued forms. All the vector spaces will be real vector spaces. A k-covector on a vector space T is an alternating k-linear function. If V is another vector space, a V-valued k-covector on T is an alternating k-linear function.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章研究向量值形式。常微分形式在实数域中有值。本章允许微分形式在向量空间中取值。当向量空间有乘法时,例如,如果它是李代数或矩阵群,则向量值形式将有相应的乘积。向量值形式在微分几何中变得不可或缺,因为主束上的连接和曲率都是向量值形式。所有的向量空间都是实向量空间。向量空间T上的k-协向量是一个交替的k-线性函数。如果V是另一个向量空间,则T上的V值k共向量是一个交替的k线性函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector-Valued Forms
This chapter studies vector-valued forms. Ordinary differential forms have values in the field of real numbers. This chapter allows differential forms to take values in a vector space. When the vector space has a multiplication, for example, if it is a Lie algebra or a matrix group, the vector-valued forms will have a corresponding product. Vector-valued forms have become indispensable in differential geometry, since connections and curvature on a principal bundle are vector-valued forms. All the vector spaces will be real vector spaces. A k-covector on a vector space T is an alternating k-linear function. If V is another vector space, a V-valued k-covector on T is an alternating k-linear function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信