基于CUDA的高斯-牛顿图像配准

Manal Jalloul, M. Baydoun, M. A. Al-Alaoui
{"title":"基于CUDA的高斯-牛顿图像配准","authors":"Manal Jalloul, M. Baydoun, M. A. Al-Alaoui","doi":"10.1109/ICECS.2011.6122274","DOIUrl":null,"url":null,"abstract":"Image registration is the process of matching different images whether 2D or 3D of certain similar or common properties for different purposes. This work addresses this field using a Gauss-Newton optimization approach. The problem is basically formulated as minimizing a cost function that is then solved by a backtracking line search. Since this is considered as a demanding problem especially for larger data, this paper presents the solution using the CUDA GPU architecture provided by Nvidia [1] in order to achieve better performance and reduce timing through parallelism.","PeriodicalId":251525,"journal":{"name":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gauss-Newton image registration with CUDA\",\"authors\":\"Manal Jalloul, M. Baydoun, M. A. Al-Alaoui\",\"doi\":\"10.1109/ICECS.2011.6122274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image registration is the process of matching different images whether 2D or 3D of certain similar or common properties for different purposes. This work addresses this field using a Gauss-Newton optimization approach. The problem is basically formulated as minimizing a cost function that is then solved by a backtracking line search. Since this is considered as a demanding problem especially for larger data, this paper presents the solution using the CUDA GPU architecture provided by Nvidia [1] in order to achieve better performance and reduce timing through parallelism.\",\"PeriodicalId\":251525,\"journal\":{\"name\":\"2011 18th IEEE International Conference on Electronics, Circuits, and Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 18th IEEE International Conference on Electronics, Circuits, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2011.6122274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2011.6122274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像配准是将具有某些相似或共同属性的二维或三维图像用于不同目的的匹配过程。这项工作使用高斯-牛顿优化方法解决了这个领域。这个问题基本上被表述为最小化成本函数,然后通过回溯线搜索来解决。由于这被认为是一个要求很高的问题,特别是对于更大的数据,本文提出了使用Nvidia提供的CUDA GPU架构的解决方案[1],以便通过并行性获得更好的性能并减少时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauss-Newton image registration with CUDA
Image registration is the process of matching different images whether 2D or 3D of certain similar or common properties for different purposes. This work addresses this field using a Gauss-Newton optimization approach. The problem is basically formulated as minimizing a cost function that is then solved by a backtracking line search. Since this is considered as a demanding problem especially for larger data, this paper presents the solution using the CUDA GPU architecture provided by Nvidia [1] in order to achieve better performance and reduce timing through parallelism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信