非素数阶群作用下AUNU置换的代数理论

A. Dogondaji, A. Ibrahim
{"title":"非素数阶群作用下AUNU置换的代数理论","authors":"A. Dogondaji, A. Ibrahim","doi":"10.57233/ijsgs.v9i1.397","DOIUrl":null,"url":null,"abstract":"Permutation groups have played important roles in method of enumerating combinatorial objects in recent times. However, the study of the applicability AUNU permutation groups using group action is challenging. In this paper, a new method of constructing group action using the subsequences of (123)- avoiding of AUNU Permutation patterns is provided. The method used the generating function of AUNU groups in the construction to obtain some geometric structures of orbits resembling to lattice. The research further established some algebraic properties of group action as well as orbit and stabilizer in permutation groups which are relevant to the study of finite group structures. The paper also providedsome motivations for the study of group action in an abstract domain.","PeriodicalId":332500,"journal":{"name":"International Journal of Science for Global Sustainability","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic Theories of AUNU Permutation Using Group Action with Non- Prime Order\",\"authors\":\"A. Dogondaji, A. Ibrahim\",\"doi\":\"10.57233/ijsgs.v9i1.397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permutation groups have played important roles in method of enumerating combinatorial objects in recent times. However, the study of the applicability AUNU permutation groups using group action is challenging. In this paper, a new method of constructing group action using the subsequences of (123)- avoiding of AUNU Permutation patterns is provided. The method used the generating function of AUNU groups in the construction to obtain some geometric structures of orbits resembling to lattice. The research further established some algebraic properties of group action as well as orbit and stabilizer in permutation groups which are relevant to the study of finite group structures. The paper also providedsome motivations for the study of group action in an abstract domain.\",\"PeriodicalId\":332500,\"journal\":{\"name\":\"International Journal of Science for Global Sustainability\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Science for Global Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57233/ijsgs.v9i1.397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science for Global Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57233/ijsgs.v9i1.397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

置换群在组合对象的枚举方法中起着重要的作用。然而,利用群作用研究AUNU置换群的适用性是一个挑战。本文提出了一种利用(123)的子序列构造群动作的新方法——避免AUNU排列模式。该方法在构造过程中利用AUNU群的生成函数,得到一些类似格的轨道几何结构。进一步建立了群作用的一些代数性质,以及与有限群结构研究有关的置换群中的轨道和稳定器。本文还提供了在抽象领域中研究群体行为的一些动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic Theories of AUNU Permutation Using Group Action with Non- Prime Order
Permutation groups have played important roles in method of enumerating combinatorial objects in recent times. However, the study of the applicability AUNU permutation groups using group action is challenging. In this paper, a new method of constructing group action using the subsequences of (123)- avoiding of AUNU Permutation patterns is provided. The method used the generating function of AUNU groups in the construction to obtain some geometric structures of orbits resembling to lattice. The research further established some algebraic properties of group action as well as orbit and stabilizer in permutation groups which are relevant to the study of finite group structures. The paper also providedsome motivations for the study of group action in an abstract domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信