单天线和多天线无线系统的高效DCT-MCM检测

Chang He, P. Xiao, Lei Zhang, J. Mao, Aijun Cao, K. Nikitopoulos
{"title":"单天线和多天线无线系统的高效DCT-MCM检测","authors":"Chang He, P. Xiao, Lei Zhang, J. Mao, Aijun Cao, K. Nikitopoulos","doi":"10.1109/PIMRC.2017.8292604","DOIUrl":null,"url":null,"abstract":"The discrete cosine transform (DCT) based multicarrier modulation (MCM) system is regarded as one of the promising transmission techniques for future wireless communications. By employing cosine basis as orthogonal functions for multiplexing each real-valued symbol with symbol period of T, it is able to maintain the subcarrier orthogonality while reducing frequency spacing to 1/(2T) Hz, which is only half of that compared to discrete Fourier transform (DFT) based multicarrier systems. In this paper, following one of the effective transmission models by which zeros are inserted as guard sequence and the DCT operation at the receiver is replaced by DFT of double length, we reformulate and evaluate three classic detection methods by appropriately processing the post-DFT signals both for single antenna and multiple-input multiple-output (MIMO) DCT-MCM systems. In all cases, we show that with our reformulated detection approaches, DCT-MCM schemes can outperform, in terms of error-rate, conventional OFDM-based systems.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient DCT-MCM detection for single and multi-antenna wireless systems\",\"authors\":\"Chang He, P. Xiao, Lei Zhang, J. Mao, Aijun Cao, K. Nikitopoulos\",\"doi\":\"10.1109/PIMRC.2017.8292604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discrete cosine transform (DCT) based multicarrier modulation (MCM) system is regarded as one of the promising transmission techniques for future wireless communications. By employing cosine basis as orthogonal functions for multiplexing each real-valued symbol with symbol period of T, it is able to maintain the subcarrier orthogonality while reducing frequency spacing to 1/(2T) Hz, which is only half of that compared to discrete Fourier transform (DFT) based multicarrier systems. In this paper, following one of the effective transmission models by which zeros are inserted as guard sequence and the DCT operation at the receiver is replaced by DFT of double length, we reformulate and evaluate three classic detection methods by appropriately processing the post-DFT signals both for single antenna and multiple-input multiple-output (MIMO) DCT-MCM systems. In all cases, we show that with our reformulated detection approaches, DCT-MCM schemes can outperform, in terms of error-rate, conventional OFDM-based systems.\",\"PeriodicalId\":397107,\"journal\":{\"name\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2017.8292604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于离散余弦变换(DCT)的多载波调制(MCM)系统被认为是未来无线通信中很有前途的传输技术之一。通过使用余弦基作为正交函数对符号周期为T的每个实值符号进行复用,可以在保持子载波正交性的同时将频率间隔减小到1/(2T) Hz,仅为基于离散傅里叶变换(DFT)的多载波系统的一半。本文根据一种有效的传输模型,即插入零作为保护序列,用双长度DFT代替接收机的DCT操作,通过对单天线和多输入多输出(MIMO) DCT- mcm系统的DFT后信号进行适当处理,重新制定和评估了三种经典的检测方法。在所有情况下,我们都表明,通过我们重新制定的检测方法,DCT-MCM方案在错误率方面优于传统的基于ofdm的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient DCT-MCM detection for single and multi-antenna wireless systems
The discrete cosine transform (DCT) based multicarrier modulation (MCM) system is regarded as one of the promising transmission techniques for future wireless communications. By employing cosine basis as orthogonal functions for multiplexing each real-valued symbol with symbol period of T, it is able to maintain the subcarrier orthogonality while reducing frequency spacing to 1/(2T) Hz, which is only half of that compared to discrete Fourier transform (DFT) based multicarrier systems. In this paper, following one of the effective transmission models by which zeros are inserted as guard sequence and the DCT operation at the receiver is replaced by DFT of double length, we reformulate and evaluate three classic detection methods by appropriately processing the post-DFT signals both for single antenna and multiple-input multiple-output (MIMO) DCT-MCM systems. In all cases, we show that with our reformulated detection approaches, DCT-MCM schemes can outperform, in terms of error-rate, conventional OFDM-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信