高效、可扩展的多跳拼车

Yixin Xu, L. Kulik, Renata Borovica-Gajic, Abdullah AlDwyish, Jianzhong Qi
{"title":"高效、可扩展的多跳拼车","authors":"Yixin Xu, L. Kulik, Renata Borovica-Gajic, Abdullah AlDwyish, Jianzhong Qi","doi":"10.1145/3397536.3422235","DOIUrl":null,"url":null,"abstract":"On-demand ride-sharing services such as Uber and Lyft have gained tremendous popularity over the past decade, largely driven by the omnipresence of mobile devices. Ride-sharing services can provide economic and environmental benefits such as reducing traffic congestion and vehicle emissions. Multi-hop ride-sharing enables passengers to transfer between vehicles within a single trip, which significantly extends the benefits of ride-sharing and provides ride opportunities that are not possible otherwise. Despite its advantages, offering real-time multi-hop ride-sharing services at large scale is a challenging computational task due to the large combination of vehicles and passenger transfer points. To address these challenges, we propose exact and approximation algorithms that are scalable and achieve real-time responses for highly dynamic ride-sharing scenarios in large metropolitan areas. Our experiments on real-world datasets show the benefits of multi-hop ride-sharing services and demonstrate that our proposed algorithms are more than two orders of magnitude faster than the state-of-the-art. Our approximation algorithms offer a comparable trip quality to our exact algorithm, while improving the ride-sharing request matching time by another order of magnitude.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Highly Efficient and Scalable Multi-hop Ride-sharing\",\"authors\":\"Yixin Xu, L. Kulik, Renata Borovica-Gajic, Abdullah AlDwyish, Jianzhong Qi\",\"doi\":\"10.1145/3397536.3422235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-demand ride-sharing services such as Uber and Lyft have gained tremendous popularity over the past decade, largely driven by the omnipresence of mobile devices. Ride-sharing services can provide economic and environmental benefits such as reducing traffic congestion and vehicle emissions. Multi-hop ride-sharing enables passengers to transfer between vehicles within a single trip, which significantly extends the benefits of ride-sharing and provides ride opportunities that are not possible otherwise. Despite its advantages, offering real-time multi-hop ride-sharing services at large scale is a challenging computational task due to the large combination of vehicles and passenger transfer points. To address these challenges, we propose exact and approximation algorithms that are scalable and achieve real-time responses for highly dynamic ride-sharing scenarios in large metropolitan areas. Our experiments on real-world datasets show the benefits of multi-hop ride-sharing services and demonstrate that our proposed algorithms are more than two orders of magnitude faster than the state-of-the-art. Our approximation algorithms offer a comparable trip quality to our exact algorithm, while improving the ride-sharing request matching time by another order of magnitude.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

优步(Uber)和来福车(Lyft)等按需拼车服务在过去10年里获得了极大的普及,这主要是受移动设备无处不在的推动。拼车服务可以提供经济和环境效益,如减少交通拥堵和车辆排放。多跳拼车使乘客能够在一次行程中换乘不同的车辆,这大大扩展了拼车的好处,并提供了其他方式无法实现的乘车机会。尽管具有优势,但由于车辆和乘客换乘点的大量组合,提供大规模的实时多跳乘车共享服务是一项具有挑战性的计算任务。为了应对这些挑战,我们提出了精确和近似算法,这些算法可扩展,并可实现大都市地区高动态拼车场景的实时响应。我们在真实世界数据集上的实验显示了多跳拼车服务的好处,并证明我们提出的算法比最先进的算法快两个数量级以上。我们的近似算法提供了与精确算法相当的旅行质量,同时将拼车请求匹配时间提高了另一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Efficient and Scalable Multi-hop Ride-sharing
On-demand ride-sharing services such as Uber and Lyft have gained tremendous popularity over the past decade, largely driven by the omnipresence of mobile devices. Ride-sharing services can provide economic and environmental benefits such as reducing traffic congestion and vehicle emissions. Multi-hop ride-sharing enables passengers to transfer between vehicles within a single trip, which significantly extends the benefits of ride-sharing and provides ride opportunities that are not possible otherwise. Despite its advantages, offering real-time multi-hop ride-sharing services at large scale is a challenging computational task due to the large combination of vehicles and passenger transfer points. To address these challenges, we propose exact and approximation algorithms that are scalable and achieve real-time responses for highly dynamic ride-sharing scenarios in large metropolitan areas. Our experiments on real-world datasets show the benefits of multi-hop ride-sharing services and demonstrate that our proposed algorithms are more than two orders of magnitude faster than the state-of-the-art. Our approximation algorithms offer a comparable trip quality to our exact algorithm, while improving the ride-sharing request matching time by another order of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信