{"title":"带有微控传感单元的生物遥测系统的研制","authors":"Luian H. Zanoni, F. L. Bertotti, D. Campos","doi":"10.1109/LASCAS.2016.7451028","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a biotelemetry system comprising a microcontrolled sensing unit and a reading unit. Through the magnetic coupling between the coils of an inductive link, the reading unit is able to provide power and establish data communication with the sensing unit. A signal generator and a current driver in the reading unit allow energy transfer to the sensing unit, which has a microcontroller that performs the signal acquisition of a temperature sensor and sends the resulting digital data to the reading unit by means of a LSK modulator. The ASK demodulator of the reading unit retrieves the data that is processed by another microcontroller, which provides the measurement result to a computer over a serial communication interface. The results showed that the sensing unit operates at a coupling distance of up to 21 mm between the sensing and reading unit coils for a 9600 bps data communication rate, whereas the maximum achieved data rate was 38400 kbps for a coupling distance of 8 mm.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a biotelemetry system with a microcontrolled sensing unit\",\"authors\":\"Luian H. Zanoni, F. L. Bertotti, D. Campos\",\"doi\":\"10.1109/LASCAS.2016.7451028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of a biotelemetry system comprising a microcontrolled sensing unit and a reading unit. Through the magnetic coupling between the coils of an inductive link, the reading unit is able to provide power and establish data communication with the sensing unit. A signal generator and a current driver in the reading unit allow energy transfer to the sensing unit, which has a microcontroller that performs the signal acquisition of a temperature sensor and sends the resulting digital data to the reading unit by means of a LSK modulator. The ASK demodulator of the reading unit retrieves the data that is processed by another microcontroller, which provides the measurement result to a computer over a serial communication interface. The results showed that the sensing unit operates at a coupling distance of up to 21 mm between the sensing and reading unit coils for a 9600 bps data communication rate, whereas the maximum achieved data rate was 38400 kbps for a coupling distance of 8 mm.\",\"PeriodicalId\":129875,\"journal\":{\"name\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"volume\":\"321 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS.2016.7451028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a biotelemetry system with a microcontrolled sensing unit
This paper presents the development of a biotelemetry system comprising a microcontrolled sensing unit and a reading unit. Through the magnetic coupling between the coils of an inductive link, the reading unit is able to provide power and establish data communication with the sensing unit. A signal generator and a current driver in the reading unit allow energy transfer to the sensing unit, which has a microcontroller that performs the signal acquisition of a temperature sensor and sends the resulting digital data to the reading unit by means of a LSK modulator. The ASK demodulator of the reading unit retrieves the data that is processed by another microcontroller, which provides the measurement result to a computer over a serial communication interface. The results showed that the sensing unit operates at a coupling distance of up to 21 mm between the sensing and reading unit coils for a 9600 bps data communication rate, whereas the maximum achieved data rate was 38400 kbps for a coupling distance of 8 mm.