{"title":"Lee和Carter去了机器学习:循环神经网络","authors":"Ronald Richman, Mario V. Wuthrich","doi":"10.2139/ssrn.3441030","DOIUrl":null,"url":null,"abstract":"In this tutorial we introduce recurrent neural networks (RNNs), and we describe the two most popular RNN architectures. These are the long short-term memory (LSTM) network and gated recurrent unit (GRU) network. Their common field of application is time series modeling, and we demonstrate their use on a mortality rate prediction problem using data from the Swiss female and male populations.","PeriodicalId":363330,"journal":{"name":"Computation Theory eJournal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Lee and Carter go Machine Learning: Recurrent Neural Networks\",\"authors\":\"Ronald Richman, Mario V. Wuthrich\",\"doi\":\"10.2139/ssrn.3441030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this tutorial we introduce recurrent neural networks (RNNs), and we describe the two most popular RNN architectures. These are the long short-term memory (LSTM) network and gated recurrent unit (GRU) network. Their common field of application is time series modeling, and we demonstrate their use on a mortality rate prediction problem using data from the Swiss female and male populations.\",\"PeriodicalId\":363330,\"journal\":{\"name\":\"Computation Theory eJournal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation Theory eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3441030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3441030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lee and Carter go Machine Learning: Recurrent Neural Networks
In this tutorial we introduce recurrent neural networks (RNNs), and we describe the two most popular RNN architectures. These are the long short-term memory (LSTM) network and gated recurrent unit (GRU) network. Their common field of application is time series modeling, and we demonstrate their use on a mortality rate prediction problem using data from the Swiss female and male populations.