{"title":"从轨迹组件中恢复绘制顺序","authors":"Minghao Yang, Xukang Zhou, Yangchang Sun, Jinglong Chen, Baohua Qiang","doi":"10.1109/ICASSP39728.2021.9413542","DOIUrl":null,"url":null,"abstract":"In spite of widely discussed, drawing order recovery (DOR) from static images is still a great challenge task. Based on the idea that drawing trajectories are able to be recovered by connecting their trajectory components in correct orders, this work proposes a novel DOR method from static images. The method contains two steps: firstly, we adopt a convolution neural network (CNN) to predict the next possible drawing components, which is able to covert the components in images to their reasonable sequences. We denote this architecture as Im2Seq-CNN; secondly, considering possible errors exist in the reasonable sequences generated by the first step, we construct a sequence to order structure (Seq2Order) to adjust the sequences to the correct orders. The main contributions include: (1) the Img2Seq-CNN step considers DOR from components instead of traditional pixels one by one along trajectories, which contributes to static images to component sequences; (2) the Seq2Order step adopts image position codes instead of traditional points’ coordinates in its encoder-decoder gated recurrent neural network (GRU-RNN). The proposed method is experienced on two well-known open handwriting databases, and yields robust and competitive results on handwriting DOR tasks compared to the state-of-arts.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Drawing Order Recovery from Trajectory Components\",\"authors\":\"Minghao Yang, Xukang Zhou, Yangchang Sun, Jinglong Chen, Baohua Qiang\",\"doi\":\"10.1109/ICASSP39728.2021.9413542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spite of widely discussed, drawing order recovery (DOR) from static images is still a great challenge task. Based on the idea that drawing trajectories are able to be recovered by connecting their trajectory components in correct orders, this work proposes a novel DOR method from static images. The method contains two steps: firstly, we adopt a convolution neural network (CNN) to predict the next possible drawing components, which is able to covert the components in images to their reasonable sequences. We denote this architecture as Im2Seq-CNN; secondly, considering possible errors exist in the reasonable sequences generated by the first step, we construct a sequence to order structure (Seq2Order) to adjust the sequences to the correct orders. The main contributions include: (1) the Img2Seq-CNN step considers DOR from components instead of traditional pixels one by one along trajectories, which contributes to static images to component sequences; (2) the Seq2Order step adopts image position codes instead of traditional points’ coordinates in its encoder-decoder gated recurrent neural network (GRU-RNN). The proposed method is experienced on two well-known open handwriting databases, and yields robust and competitive results on handwriting DOR tasks compared to the state-of-arts.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9413542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In spite of widely discussed, drawing order recovery (DOR) from static images is still a great challenge task. Based on the idea that drawing trajectories are able to be recovered by connecting their trajectory components in correct orders, this work proposes a novel DOR method from static images. The method contains two steps: firstly, we adopt a convolution neural network (CNN) to predict the next possible drawing components, which is able to covert the components in images to their reasonable sequences. We denote this architecture as Im2Seq-CNN; secondly, considering possible errors exist in the reasonable sequences generated by the first step, we construct a sequence to order structure (Seq2Order) to adjust the sequences to the correct orders. The main contributions include: (1) the Img2Seq-CNN step considers DOR from components instead of traditional pixels one by one along trajectories, which contributes to static images to component sequences; (2) the Seq2Order step adopts image position codes instead of traditional points’ coordinates in its encoder-decoder gated recurrent neural network (GRU-RNN). The proposed method is experienced on two well-known open handwriting databases, and yields robust and competitive results on handwriting DOR tasks compared to the state-of-arts.