一种具有简单共同代价的启发式属性约简算法

Ji Dong, Yu Fang, F. Min, Zhong-Hui Liu
{"title":"一种具有简单共同代价的启发式属性约简算法","authors":"Ji Dong, Yu Fang, F. Min, Zhong-Hui Liu","doi":"10.12733/JICS20105758","DOIUrl":null,"url":null,"abstract":"Cost-sensitive learning is an important issue in both data mining and machine learning. Most existing research works focus on decision systems where test-costs are additive. However, in some applications there is a common-cost within a group of tests. In this paper, we design an attribute reduction algorithm with a heuristic function and a parameter adjusting scheme to deal with this situation. The heuristic function has two parameters serving as the reward and the penalty exponent, respectively. The parameter adjusting scheme is based on the competition approach. Experimental results on four UCI (University of California-Irvine) datasets indicate that the algorithm obtains optimal reducts in most cases.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Heuristic Algorithm to Attribute Reduction with Simple Common-cost\",\"authors\":\"Ji Dong, Yu Fang, F. Min, Zhong-Hui Liu\",\"doi\":\"10.12733/JICS20105758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cost-sensitive learning is an important issue in both data mining and machine learning. Most existing research works focus on decision systems where test-costs are additive. However, in some applications there is a common-cost within a group of tests. In this paper, we design an attribute reduction algorithm with a heuristic function and a parameter adjusting scheme to deal with this situation. The heuristic function has two parameters serving as the reward and the penalty exponent, respectively. The parameter adjusting scheme is based on the competition approach. Experimental results on four UCI (University of California-Irvine) datasets indicate that the algorithm obtains optimal reducts in most cases.\",\"PeriodicalId\":213716,\"journal\":{\"name\":\"The Journal of Information and Computational Science\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Information and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12733/JICS20105758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

成本敏感学习是数据挖掘和机器学习中的一个重要问题。大多数现有的研究工作都集中在测试成本是附加的决策系统上。然而,在某些应用程序中,在一组测试中存在共同的成本。本文设计了一种带有启发式函数的属性约简算法和参数调整方案来处理这种情况。启发式函数有两个参数,分别作为奖励指数和惩罚指数。参数调整方案基于竞争法。在四个UCI (University of California-Irvine)数据集上的实验结果表明,该算法在大多数情况下获得了最优约简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Heuristic Algorithm to Attribute Reduction with Simple Common-cost
Cost-sensitive learning is an important issue in both data mining and machine learning. Most existing research works focus on decision systems where test-costs are additive. However, in some applications there is a common-cost within a group of tests. In this paper, we design an attribute reduction algorithm with a heuristic function and a parameter adjusting scheme to deal with this situation. The heuristic function has two parameters serving as the reward and the penalty exponent, respectively. The parameter adjusting scheme is based on the competition approach. Experimental results on four UCI (University of California-Irvine) datasets indicate that the algorithm obtains optimal reducts in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信