{"title":"循环U-net架构在语音增强中的应用","authors":"Tomasz Grzywalski, S. Drgas","doi":"10.23919/SPA.2018.8563364","DOIUrl":null,"url":null,"abstract":"In this paper a recurrent U-net neural architecture is proposed to speech enhancement. The mentioned neural network architecture is trained to provide a mapping between a spectrogram of a noisy speech and both spectrograms of isolated speech and noise. Some key design choices are being evaluated in experiments and discussed, including: number of levels of the U-net, presence/absence of recurrent layers, presence/absence of max pooling layers as well and upsampling algorithm used in decoder part of the network.","PeriodicalId":265587,"journal":{"name":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of recurrent U-net architecture to speech enhancement\",\"authors\":\"Tomasz Grzywalski, S. Drgas\",\"doi\":\"10.23919/SPA.2018.8563364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a recurrent U-net neural architecture is proposed to speech enhancement. The mentioned neural network architecture is trained to provide a mapping between a spectrogram of a noisy speech and both spectrograms of isolated speech and noise. Some key design choices are being evaluated in experiments and discussed, including: number of levels of the U-net, presence/absence of recurrent layers, presence/absence of max pooling layers as well and upsampling algorithm used in decoder part of the network.\",\"PeriodicalId\":265587,\"journal\":{\"name\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SPA.2018.8563364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SPA.2018.8563364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of recurrent U-net architecture to speech enhancement
In this paper a recurrent U-net neural architecture is proposed to speech enhancement. The mentioned neural network architecture is trained to provide a mapping between a spectrogram of a noisy speech and both spectrograms of isolated speech and noise. Some key design choices are being evaluated in experiments and discussed, including: number of levels of the U-net, presence/absence of recurrent layers, presence/absence of max pooling layers as well and upsampling algorithm used in decoder part of the network.