基于FPGA的过通开关交叉条的无潜径重构

Ryutaro Doi, Jaehoon Yu, M. Hashimoto
{"title":"基于FPGA的过通开关交叉条的无潜径重构","authors":"Ryutaro Doi, Jaehoon Yu, M. Hashimoto","doi":"10.1145/3240765.3240849","DOIUrl":null,"url":null,"abstract":"FPGA that utilizes via-switches, which are a kind of nonvolatile resistive RAMs, for crossbar implementation is attracting attention due to higher integration density and performance. However, programming via-switches arbitrarily in a crossbar is not trivial since a programming current must be provided through signal wires that are shared by multiple via-switches. Consequently, depending on the previous programming status in sequential programming, unintentional switch programming may occur due to signal detour, which is called sneak path problem. This problem interferes the reconfiguration of via-switch FPGA, and hence countermeasures for sneak path problem are indispensable. This paper identifies the circuit status that causes sneak path problem and proposes a sneak path avoidance method that gives sneak path free programming order of via-switches in a crossbar. We prove that sneak path free programming order necessarily exists for arbitrary on-off patterns in a crossbar as long as no loops exist, and also validate the proof and the proposed method with simulation-based evaluation. Thanks to the proposed method, any practical configurations of via-switch FPGA can be successfully programmed without sneak path problem.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sneak Path Free Reconfiguration of Via-switch Crossbars Based FPGA\",\"authors\":\"Ryutaro Doi, Jaehoon Yu, M. Hashimoto\",\"doi\":\"10.1145/3240765.3240849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FPGA that utilizes via-switches, which are a kind of nonvolatile resistive RAMs, for crossbar implementation is attracting attention due to higher integration density and performance. However, programming via-switches arbitrarily in a crossbar is not trivial since a programming current must be provided through signal wires that are shared by multiple via-switches. Consequently, depending on the previous programming status in sequential programming, unintentional switch programming may occur due to signal detour, which is called sneak path problem. This problem interferes the reconfiguration of via-switch FPGA, and hence countermeasures for sneak path problem are indispensable. This paper identifies the circuit status that causes sneak path problem and proposes a sneak path avoidance method that gives sneak path free programming order of via-switches in a crossbar. We prove that sneak path free programming order necessarily exists for arbitrary on-off patterns in a crossbar as long as no loops exist, and also validate the proof and the proposed method with simulation-based evaluation. Thanks to the proposed method, any practical configurations of via-switch FPGA can be successfully programmed without sneak path problem.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3240849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用过通开关(一种非易失性阻性ram)实现交叉排的FPGA因其更高的集成密度和性能而备受关注。然而,在交叉棒中任意编程过通开关并不是微不足道的,因为编程电流必须通过由多个过通开关共享的信号线提供。因此,在顺序规划中,依赖于先前的规划状态,由于信号绕行,可能会出现无意的切换规划,这被称为潜行路径问题。该问题干扰了通过开关FPGA的重构,因此对潜径问题的对策是必不可少的。识别了引起潜径问题的电路状态,提出了一种避免潜径的方法,该方法给出了交叉栅中过通开关的无潜径规划顺序。我们证明了在不存在环路的情况下,横杆中任意开断模式都必然存在无潜径规划顺序,并通过基于仿真的评估对证明和提出的方法进行了验证。由于所提出的方法,任何实际配置的通过开关FPGA都可以成功地编程,而不存在潜行路径问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sneak Path Free Reconfiguration of Via-switch Crossbars Based FPGA
FPGA that utilizes via-switches, which are a kind of nonvolatile resistive RAMs, for crossbar implementation is attracting attention due to higher integration density and performance. However, programming via-switches arbitrarily in a crossbar is not trivial since a programming current must be provided through signal wires that are shared by multiple via-switches. Consequently, depending on the previous programming status in sequential programming, unintentional switch programming may occur due to signal detour, which is called sneak path problem. This problem interferes the reconfiguration of via-switch FPGA, and hence countermeasures for sneak path problem are indispensable. This paper identifies the circuit status that causes sneak path problem and proposes a sneak path avoidance method that gives sneak path free programming order of via-switches in a crossbar. We prove that sneak path free programming order necessarily exists for arbitrary on-off patterns in a crossbar as long as no loops exist, and also validate the proof and the proposed method with simulation-based evaluation. Thanks to the proposed method, any practical configurations of via-switch FPGA can be successfully programmed without sneak path problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信