Alejandro Lozano, M. Ballesteros, D. Cruz-Ortiz, I. Salgado, J. Huegel, I. Chairez
{"title":"状态约束下部分未知三阶机电系统的鲁棒控制","authors":"Alejandro Lozano, M. Ballesteros, D. Cruz-Ortiz, I. Salgado, J. Huegel, I. Chairez","doi":"10.1109/CoDIT55151.2022.9804099","DOIUrl":null,"url":null,"abstract":"This work presents the design of a control trajec-tory algorithm based on Barrier Lyapunov functions (BLF) for a class of third-order electro-mechanical systems. The method considers unknown control gains and uncertain plant parame-ters, a common problem in control engineering applications. In order to deal with the uncertain parameters, this study proposes a backstepping adaptive strategy applying Nussbaum functions to know the sign of the control gains. The BLF imposes partial constraints to keep the trajectories of the system inside a safe operation set. The proposed controller is tested in a virtual one-link robotic manipulator including actuator dynamics to develop an adequate trajectory tracking. The maximum tracking error norm was 0.02, which fulfilled the maximum constrained bound of 0.5.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust control for third-order electro-mechanical systems with partially unknown dynamics under state constraints\",\"authors\":\"Alejandro Lozano, M. Ballesteros, D. Cruz-Ortiz, I. Salgado, J. Huegel, I. Chairez\",\"doi\":\"10.1109/CoDIT55151.2022.9804099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the design of a control trajec-tory algorithm based on Barrier Lyapunov functions (BLF) for a class of third-order electro-mechanical systems. The method considers unknown control gains and uncertain plant parame-ters, a common problem in control engineering applications. In order to deal with the uncertain parameters, this study proposes a backstepping adaptive strategy applying Nussbaum functions to know the sign of the control gains. The BLF imposes partial constraints to keep the trajectories of the system inside a safe operation set. The proposed controller is tested in a virtual one-link robotic manipulator including actuator dynamics to develop an adequate trajectory tracking. The maximum tracking error norm was 0.02, which fulfilled the maximum constrained bound of 0.5.\",\"PeriodicalId\":185510,\"journal\":{\"name\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"353 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT55151.2022.9804099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9804099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust control for third-order electro-mechanical systems with partially unknown dynamics under state constraints
This work presents the design of a control trajec-tory algorithm based on Barrier Lyapunov functions (BLF) for a class of third-order electro-mechanical systems. The method considers unknown control gains and uncertain plant parame-ters, a common problem in control engineering applications. In order to deal with the uncertain parameters, this study proposes a backstepping adaptive strategy applying Nussbaum functions to know the sign of the control gains. The BLF imposes partial constraints to keep the trajectories of the system inside a safe operation set. The proposed controller is tested in a virtual one-link robotic manipulator including actuator dynamics to develop an adequate trajectory tracking. The maximum tracking error norm was 0.02, which fulfilled the maximum constrained bound of 0.5.