电影评论情感对剧情选择的影响

Danny Oka Ratmana, Guruh Fajar Shidik, A. Z. Fanani, Muljono, R. A. Pramunendar
{"title":"电影评论情感对剧情选择的影响","authors":"Danny Oka Ratmana, Guruh Fajar Shidik, A. Z. Fanani, Muljono, R. A. Pramunendar","doi":"10.1109/iSemantic50169.2020.9234287","DOIUrl":null,"url":null,"abstract":"In the Text classification task, feature selections are one of the methods to improve classifier performance. With dimension reduction of the original features, it usually used to get better performance of accuracy, precision, recall, or maybe to accelerate computation time. In this paper, we applied several feature selections method such as Kbest with Chi-Squared Selection, Linear SVC, and Tree-based Selection into five classifiers: Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machines (SVM) dan Neural Network (NN). Datasets that we used are collected from Kaggle, Imdb Movie Review 5000 records, and the best F1-Score results are on Linear SVC that running on SVM Classifier 92,32%.","PeriodicalId":345558,"journal":{"name":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Feature Selections on Movie Reviews Sentiment\",\"authors\":\"Danny Oka Ratmana, Guruh Fajar Shidik, A. Z. Fanani, Muljono, R. A. Pramunendar\",\"doi\":\"10.1109/iSemantic50169.2020.9234287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Text classification task, feature selections are one of the methods to improve classifier performance. With dimension reduction of the original features, it usually used to get better performance of accuracy, precision, recall, or maybe to accelerate computation time. In this paper, we applied several feature selections method such as Kbest with Chi-Squared Selection, Linear SVC, and Tree-based Selection into five classifiers: Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machines (SVM) dan Neural Network (NN). Datasets that we used are collected from Kaggle, Imdb Movie Review 5000 records, and the best F1-Score results are on Linear SVC that running on SVM Classifier 92,32%.\",\"PeriodicalId\":345558,\"journal\":{\"name\":\"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSemantic50169.2020.9234287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSemantic50169.2020.9234287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在文本分类任务中,特征选择是提高分类器性能的方法之一。通过对原始特征进行降维,通常可以获得更好的准确率、精密度、查全率等性能,或者加快计算速度。本文将Kbest与卡方选择、线性SVC和基于树的选择等几种特征选择方法应用于朴素贝叶斯(NB)、决策树(DT)、k近邻(KNN)、支持向量机(SVM)和神经网络(NN)五种分类器中。我们使用的数据集是从Kaggle, Imdb Movie Review 5000条记录中收集的,最好的F1-Score结果是在运行在支持向量机分类器92,32%上的线性SVC上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Feature Selections on Movie Reviews Sentiment
In the Text classification task, feature selections are one of the methods to improve classifier performance. With dimension reduction of the original features, it usually used to get better performance of accuracy, precision, recall, or maybe to accelerate computation time. In this paper, we applied several feature selections method such as Kbest with Chi-Squared Selection, Linear SVC, and Tree-based Selection into five classifiers: Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machines (SVM) dan Neural Network (NN). Datasets that we used are collected from Kaggle, Imdb Movie Review 5000 records, and the best F1-Score results are on Linear SVC that running on SVM Classifier 92,32%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信