{"title":"可信第三方基于纠缠态的QKD协议","authors":"Abdulbast A. Abushgra, K. Elleithy","doi":"10.1109/LISAT.2017.8001969","DOIUrl":null,"url":null,"abstract":"Quantum cryptography is considered a solution for sharing secret information in a secure mode. Establishing a quantum security platform into an exciting system requires a package of stable processes. One of these processes is based on creating a Quantum Key Distribution (QKD) protocol or sharing a secret key. This paper presents a QKD protocol that utilizes two quantum channels to prepare a shared secret key. The first communication channel will be initiated by entanglement states, where the entangled photons will be emitted by a trusted third party. The second communication channel utilizes the superposition states that will be initiated by the one of the communicated parties. Moreover, the protocol produces a string of random qubits after verifying the communicated legitimate parties during entangled state channels. The produced string will reflect the shared secret key between the users.","PeriodicalId":370931,"journal":{"name":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"QKD protocol based on entangled states by trusted third party\",\"authors\":\"Abdulbast A. Abushgra, K. Elleithy\",\"doi\":\"10.1109/LISAT.2017.8001969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum cryptography is considered a solution for sharing secret information in a secure mode. Establishing a quantum security platform into an exciting system requires a package of stable processes. One of these processes is based on creating a Quantum Key Distribution (QKD) protocol or sharing a secret key. This paper presents a QKD protocol that utilizes two quantum channels to prepare a shared secret key. The first communication channel will be initiated by entanglement states, where the entangled photons will be emitted by a trusted third party. The second communication channel utilizes the superposition states that will be initiated by the one of the communicated parties. Moreover, the protocol produces a string of random qubits after verifying the communicated legitimate parties during entangled state channels. The produced string will reflect the shared secret key between the users.\",\"PeriodicalId\":370931,\"journal\":{\"name\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISAT.2017.8001969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISAT.2017.8001969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QKD protocol based on entangled states by trusted third party
Quantum cryptography is considered a solution for sharing secret information in a secure mode. Establishing a quantum security platform into an exciting system requires a package of stable processes. One of these processes is based on creating a Quantum Key Distribution (QKD) protocol or sharing a secret key. This paper presents a QKD protocol that utilizes two quantum channels to prepare a shared secret key. The first communication channel will be initiated by entanglement states, where the entangled photons will be emitted by a trusted third party. The second communication channel utilizes the superposition states that will be initiated by the one of the communicated parties. Moreover, the protocol produces a string of random qubits after verifying the communicated legitimate parties during entangled state channels. The produced string will reflect the shared secret key between the users.