竞赛:以上下文为特征的单元测试完成基准

Johannes Villmow, Jonas Depoix, A. Ulges
{"title":"竞赛:以上下文为特征的单元测试完成基准","authors":"Johannes Villmow, Jonas Depoix, A. Ulges","doi":"10.18653/v1/2021.nlp4prog-1.2","DOIUrl":null,"url":null,"abstract":"We introduce CONTEST, a benchmark for NLP-based unit test completion, the task of predicting a test’s assert statements given its setup and focal method, i.e. the method to be tested. ConTest is large-scale (with 365k datapoints). Besides the test code and tested code, it also features context code called by either. We found context to be crucial for accurately predicting assertions. We also introduce baselines based on transformer encoder-decoders, and study the effects of including syntactic information and context. Overall, our models achieve a BLEU score of 38.2, while only generating unparsable code in 1.92% of cases.","PeriodicalId":435990,"journal":{"name":"Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ConTest: A Unit Test Completion Benchmark featuring Context\",\"authors\":\"Johannes Villmow, Jonas Depoix, A. Ulges\",\"doi\":\"10.18653/v1/2021.nlp4prog-1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce CONTEST, a benchmark for NLP-based unit test completion, the task of predicting a test’s assert statements given its setup and focal method, i.e. the method to be tested. ConTest is large-scale (with 365k datapoints). Besides the test code and tested code, it also features context code called by either. We found context to be crucial for accurately predicting assertions. We also introduce baselines based on transformer encoder-decoders, and study the effects of including syntactic information and context. Overall, our models achieve a BLEU score of 38.2, while only generating unparsable code in 1.92% of cases.\",\"PeriodicalId\":435990,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.nlp4prog-1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.nlp4prog-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们介绍CONTEST,这是一个基于nlp的单元测试完成的基准,它的任务是在给定测试的设置和焦点方法(即要测试的方法)的情况下预测测试的断言语句。ConTest是大规模的(有365k个数据点)。除了测试代码和被测试代码之外,它还具有由两者调用的上下文代码。我们发现上下文对于准确预测断言至关重要。我们还介绍了基于转换编码器-解码器的基线,并研究了包含语法信息和上下文的影响。总的来说,我们的模型实现了38.2的BLEU分数,而在1.92%的情况下仅生成不可解析的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ConTest: A Unit Test Completion Benchmark featuring Context
We introduce CONTEST, a benchmark for NLP-based unit test completion, the task of predicting a test’s assert statements given its setup and focal method, i.e. the method to be tested. ConTest is large-scale (with 365k datapoints). Besides the test code and tested code, it also features context code called by either. We found context to be crucial for accurately predicting assertions. We also introduce baselines based on transformer encoder-decoders, and study the effects of including syntactic information and context. Overall, our models achieve a BLEU score of 38.2, while only generating unparsable code in 1.92% of cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信