神经网络PID自整定控制器在伺服系统中的仿真与应用

Qing-song Lin, Yu-fei Yao, Jun-xiao Wang
{"title":"神经网络PID自整定控制器在伺服系统中的仿真与应用","authors":"Qing-song Lin, Yu-fei Yao, Jun-xiao Wang","doi":"10.1109/DBTA.2010.5658973","DOIUrl":null,"url":null,"abstract":"It is difficult for the control system to get expected effect because of factors such as time-varying and non-linear. Considering the fact, a new algorithm is put forward, in which parameters of the PID control parameters are optimized by BP and RBF nets. By using MATLAB as the simulation tool, this new PID auto-tuning algorithm is simulated and researched. The simulation results show that this algorithm has enhanced response speed and robustness.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation and Application of Neural Network PID Auto-Tuning Controller in Servo-System\",\"authors\":\"Qing-song Lin, Yu-fei Yao, Jun-xiao Wang\",\"doi\":\"10.1109/DBTA.2010.5658973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is difficult for the control system to get expected effect because of factors such as time-varying and non-linear. Considering the fact, a new algorithm is put forward, in which parameters of the PID control parameters are optimized by BP and RBF nets. By using MATLAB as the simulation tool, this new PID auto-tuning algorithm is simulated and researched. The simulation results show that this algorithm has enhanced response speed and robustness.\",\"PeriodicalId\":320509,\"journal\":{\"name\":\"2010 2nd International Workshop on Database Technology and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Database Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBTA.2010.5658973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5658973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于时变和非线性等因素,控制系统难以达到预期的效果。考虑到这一点,提出了一种新的PID控制算法,该算法采用BP和RBF网络对PID控制参数进行优化。利用MATLAB作为仿真工具,对这种新的PID自整定算法进行了仿真研究。仿真结果表明,该算法提高了响应速度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation and Application of Neural Network PID Auto-Tuning Controller in Servo-System
It is difficult for the control system to get expected effect because of factors such as time-varying and non-linear. Considering the fact, a new algorithm is put forward, in which parameters of the PID control parameters are optimized by BP and RBF nets. By using MATLAB as the simulation tool, this new PID auto-tuning algorithm is simulated and researched. The simulation results show that this algorithm has enhanced response speed and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信