基于空间一致性的多视图Azure Kinect扫描仪鲁棒校准

W. Darwish, Quentin Bolsée, A. Munteanu
{"title":"基于空间一致性的多视图Azure Kinect扫描仪鲁棒校准","authors":"W. Darwish, Quentin Bolsée, A. Munteanu","doi":"10.1109/IC3D51119.2020.9376321","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new calibration method for a camera system comprising five Azure Kinect. The calibration method uses a ChArUco coded cube installed in the middle of the system. A new 3D optimization cost is proposed to overcome the IR camera noise and to enhance global 3D consistency of the captured model. The cost includes the repro-jection error and the point to plane distance. As a refinement stage, along with point to plane distance, a patch to plane distance is added in the cost to overcome the noise effect of the depth camera. The experimental results demonstrate that the proposed calibration method achieves a better reprojection error and more stable results in terms of standard deviation of the estimated pose compared to the state-of-the-art. In addition, the qualitative results show that the proposed method can produce a better registered point cloud compared to conventional calibration.","PeriodicalId":159318,"journal":{"name":"2020 International Conference on 3D Immersion (IC3D)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Calibration of a Multi-View Azure Kinect Scanner Based on Spatial Consistency\",\"authors\":\"W. Darwish, Quentin Bolsée, A. Munteanu\",\"doi\":\"10.1109/IC3D51119.2020.9376321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a new calibration method for a camera system comprising five Azure Kinect. The calibration method uses a ChArUco coded cube installed in the middle of the system. A new 3D optimization cost is proposed to overcome the IR camera noise and to enhance global 3D consistency of the captured model. The cost includes the repro-jection error and the point to plane distance. As a refinement stage, along with point to plane distance, a patch to plane distance is added in the cost to overcome the noise effect of the depth camera. The experimental results demonstrate that the proposed calibration method achieves a better reprojection error and more stable results in terms of standard deviation of the estimated pose compared to the state-of-the-art. In addition, the qualitative results show that the proposed method can produce a better registered point cloud compared to conventional calibration.\",\"PeriodicalId\":159318,\"journal\":{\"name\":\"2020 International Conference on 3D Immersion (IC3D)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on 3D Immersion (IC3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3D51119.2020.9376321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Immersion (IC3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D51119.2020.9376321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们介绍了一种新的校准方法,用于由五个Azure Kinect组成的相机系统。校准方法使用安装在系统中间的ChArUco编码立方体。提出了一种新的三维优化算法来克服红外摄像机噪声,提高捕获模型的全局三维一致性。代价包括再现误差和点到平面的距离。作为一个细化阶段,在点到平面距离的基础上,在成本中加入一个补丁到平面的距离,以克服深度相机的噪声影响。实验结果表明,与现有标定方法相比,该标定方法具有更好的重投影误差和更稳定的姿态估计标准差。定性结果表明,与传统标定方法相比,该方法能获得更好的配准点云。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Calibration of a Multi-View Azure Kinect Scanner Based on Spatial Consistency
In this work, we introduce a new calibration method for a camera system comprising five Azure Kinect. The calibration method uses a ChArUco coded cube installed in the middle of the system. A new 3D optimization cost is proposed to overcome the IR camera noise and to enhance global 3D consistency of the captured model. The cost includes the repro-jection error and the point to plane distance. As a refinement stage, along with point to plane distance, a patch to plane distance is added in the cost to overcome the noise effect of the depth camera. The experimental results demonstrate that the proposed calibration method achieves a better reprojection error and more stable results in terms of standard deviation of the estimated pose compared to the state-of-the-art. In addition, the qualitative results show that the proposed method can produce a better registered point cloud compared to conventional calibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信