改进混沌蜂群优化(MCBCO)算法的数据聚类

S. Sahoo, P. Pattanaik, D. Das
{"title":"改进混沌蜂群优化(MCBCO)算法的数据聚类","authors":"S. Sahoo, P. Pattanaik, D. Das","doi":"10.1109/ODICON50556.2021.9428991","DOIUrl":null,"url":null,"abstract":"Results of the heuristic search-based optimization algorithms largely depend on the initial guess. When the initial guess is closer to the optimal result, then the algorithm converges faster. But for large datasets, the probability of getting this closer guess is difficult. In this paper, a Modified Chaotic Bee Colony Optimization (MCBCO) algorithm is proposed for data clustering. It is capable to explore the solution space in all directions, despite of initial guesses. The chaotic bees that are created using chaotic sequences enable the algorithm to do this. It uses steady state selection tactic for better exploration. The algorithm also uses Gaussian mutation for further exploitations in the solution. The simulation results and analysis reflects that the algorithm is competent for the data clustering problem.","PeriodicalId":197132,"journal":{"name":"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Chaotic Bee Colony Optimization (MCBCO) algorithm for data clustering\",\"authors\":\"S. Sahoo, P. Pattanaik, D. Das\",\"doi\":\"10.1109/ODICON50556.2021.9428991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of the heuristic search-based optimization algorithms largely depend on the initial guess. When the initial guess is closer to the optimal result, then the algorithm converges faster. But for large datasets, the probability of getting this closer guess is difficult. In this paper, a Modified Chaotic Bee Colony Optimization (MCBCO) algorithm is proposed for data clustering. It is capable to explore the solution space in all directions, despite of initial guesses. The chaotic bees that are created using chaotic sequences enable the algorithm to do this. It uses steady state selection tactic for better exploration. The algorithm also uses Gaussian mutation for further exploitations in the solution. The simulation results and analysis reflects that the algorithm is competent for the data clustering problem.\",\"PeriodicalId\":197132,\"journal\":{\"name\":\"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ODICON50556.2021.9428991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ODICON50556.2021.9428991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

启发式搜索优化算法的结果很大程度上取决于初始猜测。当初始猜测更接近最优结果时,算法收敛得更快。但对于大型数据集来说,获得这种更接近的猜测是很困难的。本文提出了一种改进的混沌蜂群优化算法(MCBCO)用于数据聚类。它能够在所有方向上探索解空间,尽管最初的猜测。使用混沌序列创建的混沌蜜蜂使算法能够做到这一点。它采用稳态选择策略进行更好的勘探。该算法还利用高斯突变对解进行进一步的利用。仿真结果和分析表明,该算法能够很好地解决数据聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Chaotic Bee Colony Optimization (MCBCO) algorithm for data clustering
Results of the heuristic search-based optimization algorithms largely depend on the initial guess. When the initial guess is closer to the optimal result, then the algorithm converges faster. But for large datasets, the probability of getting this closer guess is difficult. In this paper, a Modified Chaotic Bee Colony Optimization (MCBCO) algorithm is proposed for data clustering. It is capable to explore the solution space in all directions, despite of initial guesses. The chaotic bees that are created using chaotic sequences enable the algorithm to do this. It uses steady state selection tactic for better exploration. The algorithm also uses Gaussian mutation for further exploitations in the solution. The simulation results and analysis reflects that the algorithm is competent for the data clustering problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信