Daniele Berardini, A. Mancini, P. Zingaretti, S. Moccia
{"title":"边缘人工智能:多摄像头视频监控应用","authors":"Daniele Berardini, A. Mancini, P. Zingaretti, S. Moccia","doi":"10.1115/detc2021-70738","DOIUrl":null,"url":null,"abstract":"\n Nowadays, video surveillance has a crucial role. Analyzing surveillance videos is, however, a time consuming and tiresome procedure. In the last years, artificial intelligence paved the way for automatic and accurate surveillance-video analysis. In parallel to the development of artificial-intelligence methodologies, edge computing is becoming an active field of research with the final goal to provide cost-effective and real time deployment of the developed methodologies. In this work, we present an edge artificial intelligence application to video surveillance. Our approach relies on a set of four IP cameras, which acquire video frames that are processed on the edge using the NVIDIA® Jetson Nano. A state-of-the-art deep-learning model, called Single Shot multibox Detector (SSD) MobileNetV2 network, is used to perform object and people detection in real-time. The proposed infrastructure obtained an inference speed of ∼10.0 Frames per Second (FPS) for each parallel video stream. These results prompt the possibility of translating our work into a real word scenario. The integration of the presented application into a wider monitoring system with a central unit could bring benefits to the overall infrastructure. Indeed our application could send only video-related high-level information to the central unit, allowing it to combine information with data coming from other sensing devices without unuseful data overload. This would ensure a fast response in case of emergency or detected anomalies. We hope this work will contribute to stimulate the research in the field of edge artificial intelligence for video surveillance.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Edge Artificial Intelligence: A Multi-Camera Video Surveillance Application\",\"authors\":\"Daniele Berardini, A. Mancini, P. Zingaretti, S. Moccia\",\"doi\":\"10.1115/detc2021-70738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Nowadays, video surveillance has a crucial role. Analyzing surveillance videos is, however, a time consuming and tiresome procedure. In the last years, artificial intelligence paved the way for automatic and accurate surveillance-video analysis. In parallel to the development of artificial-intelligence methodologies, edge computing is becoming an active field of research with the final goal to provide cost-effective and real time deployment of the developed methodologies. In this work, we present an edge artificial intelligence application to video surveillance. Our approach relies on a set of four IP cameras, which acquire video frames that are processed on the edge using the NVIDIA® Jetson Nano. A state-of-the-art deep-learning model, called Single Shot multibox Detector (SSD) MobileNetV2 network, is used to perform object and people detection in real-time. The proposed infrastructure obtained an inference speed of ∼10.0 Frames per Second (FPS) for each parallel video stream. These results prompt the possibility of translating our work into a real word scenario. The integration of the presented application into a wider monitoring system with a central unit could bring benefits to the overall infrastructure. Indeed our application could send only video-related high-level information to the central unit, allowing it to combine information with data coming from other sensing devices without unuseful data overload. This would ensure a fast response in case of emergency or detected anomalies. We hope this work will contribute to stimulate the research in the field of edge artificial intelligence for video surveillance.\",\"PeriodicalId\":221388,\"journal\":{\"name\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-70738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-70738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge Artificial Intelligence: A Multi-Camera Video Surveillance Application
Nowadays, video surveillance has a crucial role. Analyzing surveillance videos is, however, a time consuming and tiresome procedure. In the last years, artificial intelligence paved the way for automatic and accurate surveillance-video analysis. In parallel to the development of artificial-intelligence methodologies, edge computing is becoming an active field of research with the final goal to provide cost-effective and real time deployment of the developed methodologies. In this work, we present an edge artificial intelligence application to video surveillance. Our approach relies on a set of four IP cameras, which acquire video frames that are processed on the edge using the NVIDIA® Jetson Nano. A state-of-the-art deep-learning model, called Single Shot multibox Detector (SSD) MobileNetV2 network, is used to perform object and people detection in real-time. The proposed infrastructure obtained an inference speed of ∼10.0 Frames per Second (FPS) for each parallel video stream. These results prompt the possibility of translating our work into a real word scenario. The integration of the presented application into a wider monitoring system with a central unit could bring benefits to the overall infrastructure. Indeed our application could send only video-related high-level information to the central unit, allowing it to combine information with data coming from other sensing devices without unuseful data overload. This would ensure a fast response in case of emergency or detected anomalies. We hope this work will contribute to stimulate the research in the field of edge artificial intelligence for video surveillance.