开放对话生成系统的最新应用技术

Farida Youness, M. Madkour, A. Elsefy
{"title":"开放对话生成系统的最新应用技术","authors":"Farida Youness, M. Madkour, A. Elsefy","doi":"10.1109/icci54321.2022.9756110","DOIUrl":null,"url":null,"abstract":"Dialog Generation Systems (DGS) have emerged as a critical aspect of Natural Language Processing in recent years (NLP). It enables a diverse set of relevant applications to interact with humans in a natural and intelligent way. This study provides a systematic review of open DGS techniques that have recently been used. The major goal of this study is to discuss and analyze the most widely used approaches for implementing DGS's that have been published in recent years. Also, the most popular datasets for open DGS are enumerated, and some commonly used automatic evaluating metrics are presented. As a result, the explored methods are categorized into six main categories, Reinforcement Learning (RL), Hierarchical Recurrent Encoder-Decoder (HRED), Generative Adversarial Networks (GAN), Variational Auto-Encoder (VAE), Sequence to Sequence (Seq2Seq), and Pretraining Model.","PeriodicalId":122550,"journal":{"name":"2022 5th International Conference on Computing and Informatics (ICCI)","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Applied Techniques for Open Dialog Generation Systems\",\"authors\":\"Farida Youness, M. Madkour, A. Elsefy\",\"doi\":\"10.1109/icci54321.2022.9756110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dialog Generation Systems (DGS) have emerged as a critical aspect of Natural Language Processing in recent years (NLP). It enables a diverse set of relevant applications to interact with humans in a natural and intelligent way. This study provides a systematic review of open DGS techniques that have recently been used. The major goal of this study is to discuss and analyze the most widely used approaches for implementing DGS's that have been published in recent years. Also, the most popular datasets for open DGS are enumerated, and some commonly used automatic evaluating metrics are presented. As a result, the explored methods are categorized into six main categories, Reinforcement Learning (RL), Hierarchical Recurrent Encoder-Decoder (HRED), Generative Adversarial Networks (GAN), Variational Auto-Encoder (VAE), Sequence to Sequence (Seq2Seq), and Pretraining Model.\",\"PeriodicalId\":122550,\"journal\":{\"name\":\"2022 5th International Conference on Computing and Informatics (ICCI)\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Computing and Informatics (ICCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icci54321.2022.9756110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Computing and Informatics (ICCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icci54321.2022.9756110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,对话生成系统(DGS)已成为自然语言处理(NLP)的一个重要方面。它使一组不同的相关应用程序能够以自然和智能的方式与人类交互。本研究对最近使用的开放式DGS技术进行了系统回顾。本研究的主要目的是讨论和分析近年来发表的最广泛使用的实施DGS的方法。此外,还列举了开放DGS最流行的数据集,并给出了一些常用的自动评估指标。因此,所探索的方法被分为六个主要类别,强化学习(RL),分层循环编码器-解码器(HRED),生成对抗网络(GAN),变分自编码器(VAE),序列到序列(Seq2Seq)和预训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Applied Techniques for Open Dialog Generation Systems
Dialog Generation Systems (DGS) have emerged as a critical aspect of Natural Language Processing in recent years (NLP). It enables a diverse set of relevant applications to interact with humans in a natural and intelligent way. This study provides a systematic review of open DGS techniques that have recently been used. The major goal of this study is to discuss and analyze the most widely used approaches for implementing DGS's that have been published in recent years. Also, the most popular datasets for open DGS are enumerated, and some commonly used automatic evaluating metrics are presented. As a result, the explored methods are categorized into six main categories, Reinforcement Learning (RL), Hierarchical Recurrent Encoder-Decoder (HRED), Generative Adversarial Networks (GAN), Variational Auto-Encoder (VAE), Sequence to Sequence (Seq2Seq), and Pretraining Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信