二元信赖域最陡下降的收敛性

Paul Manns, Mirko Hahn, C. Kirches, S. Leyffer, S. Sager
{"title":"二元信赖域最陡下降的收敛性","authors":"Paul Manns, Mirko Hahn, C. Kirches, S. Leyffer, S. Sager","doi":"10.46298/jnsao-2023-10164","DOIUrl":null,"url":null,"abstract":"Binary trust-region steepest descent (BTR) and combinatorial integral\napproximation (CIA) are two recently investigated approaches for the solution\nof optimization problems with distributed binary-/discrete-valued variables\n(control functions). We show improved convergence results for BTR by imposing a\ncompactness assumption that is similar to the convergence theory of CIA. As a\ncorollary we conclude that BTR also constitutes a descent algorithm on the\ncontinuous relaxation and its iterates converge weakly-$^*$ to stationary\npoints of the latter. We provide computational results that validate our\nfindings. In addition, we observe a regularizing effect of BTR, which we\nexplore by means of a hybridization of CIA and BTR.","PeriodicalId":250939,"journal":{"name":"Journal of Nonsmooth Analysis and Optimization","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Convergence of Binary Trust-Region Steepest Descent\",\"authors\":\"Paul Manns, Mirko Hahn, C. Kirches, S. Leyffer, S. Sager\",\"doi\":\"10.46298/jnsao-2023-10164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary trust-region steepest descent (BTR) and combinatorial integral\\napproximation (CIA) are two recently investigated approaches for the solution\\nof optimization problems with distributed binary-/discrete-valued variables\\n(control functions). We show improved convergence results for BTR by imposing a\\ncompactness assumption that is similar to the convergence theory of CIA. As a\\ncorollary we conclude that BTR also constitutes a descent algorithm on the\\ncontinuous relaxation and its iterates converge weakly-$^*$ to stationary\\npoints of the latter. We provide computational results that validate our\\nfindings. In addition, we observe a regularizing effect of BTR, which we\\nexplore by means of a hybridization of CIA and BTR.\",\"PeriodicalId\":250939,\"journal\":{\"name\":\"Journal of Nonsmooth Analysis and Optimization\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonsmooth Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jnsao-2023-10164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonsmooth Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jnsao-2023-10164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

二元信赖域最陡下降法(BTR)和组合积分逼近法(CIA)是近年来研究的两种求解具有分布二元/离散变量(控制函数)的优化问题的方法。我们通过施加一个类似于CIA收敛理论的紧性假设,证明了BTR收敛结果的改进。作为推论,我们得出BTR也构成了连续松弛的下降算法,其迭代弱收敛于后者的平稳点。我们提供了计算结果来验证我们的发现。此外,我们观察到BTR的正则化效应,我们通过CIA和BTR的杂交来探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Convergence of Binary Trust-Region Steepest Descent
Binary trust-region steepest descent (BTR) and combinatorial integral approximation (CIA) are two recently investigated approaches for the solution of optimization problems with distributed binary-/discrete-valued variables (control functions). We show improved convergence results for BTR by imposing a compactness assumption that is similar to the convergence theory of CIA. As a corollary we conclude that BTR also constitutes a descent algorithm on the continuous relaxation and its iterates converge weakly-$^*$ to stationary points of the latter. We provide computational results that validate our findings. In addition, we observe a regularizing effect of BTR, which we explore by means of a hybridization of CIA and BTR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信