用于显著性图预测的全卷积密度网络

Taiki Oyama, Takao Yamanaka
{"title":"用于显著性图预测的全卷积密度网络","authors":"Taiki Oyama, Takao Yamanaka","doi":"10.1109/ACPR.2017.143","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fully convolutional DenseNet model for saliency-map prediction (DenseSal). While the most state-of-the-art models for predicting saliency maps use shallow networks such as VGG-16, our model uses densely connected convolutional networks (DenseNet) with over 150 layers. Since DenseNet has shown the excellent results on image classification tasks, the coarse feature maps from the fully convolutional neural networks based on DenseNets were concatenated to predict saliency maps through a readout network. It is shown that the DenseNet is useful for the saliency-map prediction and achieved the state-of-the-art accuracy on the major fixation datasets.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fully Convolutional DenseNet for Saliency-Map Prediction\",\"authors\":\"Taiki Oyama, Takao Yamanaka\",\"doi\":\"10.1109/ACPR.2017.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fully convolutional DenseNet model for saliency-map prediction (DenseSal). While the most state-of-the-art models for predicting saliency maps use shallow networks such as VGG-16, our model uses densely connected convolutional networks (DenseNet) with over 150 layers. Since DenseNet has shown the excellent results on image classification tasks, the coarse feature maps from the fully convolutional neural networks based on DenseNets were concatenated to predict saliency maps through a readout network. It is shown that the DenseNet is useful for the saliency-map prediction and achieved the state-of-the-art accuracy on the major fixation datasets.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一个用于显著性图预测的全卷积DenseNet模型(DenseSal)。虽然预测显著性图的最先进模型使用VGG-16等浅层网络,但我们的模型使用超过150层的密集连接卷积网络(DenseNet)。由于DenseNet在图像分类任务上取得了优异的成绩,我们将基于DenseNet的全卷积神经网络的粗特征图连接起来,通过读出网络预测显著性图。结果表明,DenseNet可用于显著性图预测,并在主要注视数据集上达到了最先进的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Convolutional DenseNet for Saliency-Map Prediction
In this paper, we propose a fully convolutional DenseNet model for saliency-map prediction (DenseSal). While the most state-of-the-art models for predicting saliency maps use shallow networks such as VGG-16, our model uses densely connected convolutional networks (DenseNet) with over 150 layers. Since DenseNet has shown the excellent results on image classification tasks, the coarse feature maps from the fully convolutional neural networks based on DenseNets were concatenated to predict saliency maps through a readout network. It is shown that the DenseNet is useful for the saliency-map prediction and achieved the state-of-the-art accuracy on the major fixation datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信