海上导管架结构时域疲劳寿命分析

Yan Wu
{"title":"海上导管架结构时域疲劳寿命分析","authors":"Yan Wu","doi":"10.1115/iowtc2019-7591","DOIUrl":null,"url":null,"abstract":"\n Offshore wind system encountered wind, wave, current, soil, and other environmental loads. The support structure is randomly loaded for a long time, which is more likely to cause fatigue damage. In this paper, the NREL 5MW wind turbine and OC4 jacket support structure is selected to perform the time domain fatigue analysis. Commercial software Bladed and SACS are used to perform the required structural responses and fatigue strength calculations. The Stress Concentration Factors (SCF) and S-N curves for the stress calculations of tubular joints are adopted based on the recommendation of DNV GL guidelines. The magnitude of the stress variation range and the corresponding number of counts are obtained by using the rain-flow counting algorithm. Finally, the Palmgren-Miner’s rule is adopted to calculate the cumulative damage ratio and the fatigue life can then be estimated. Fatigue damage ratio and structural fatigue life of each joint during 20 years of operation period are evaluated.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time Domain Fatigue Life Analysis of Offshore Jacket Structure\",\"authors\":\"Yan Wu\",\"doi\":\"10.1115/iowtc2019-7591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Offshore wind system encountered wind, wave, current, soil, and other environmental loads. The support structure is randomly loaded for a long time, which is more likely to cause fatigue damage. In this paper, the NREL 5MW wind turbine and OC4 jacket support structure is selected to perform the time domain fatigue analysis. Commercial software Bladed and SACS are used to perform the required structural responses and fatigue strength calculations. The Stress Concentration Factors (SCF) and S-N curves for the stress calculations of tubular joints are adopted based on the recommendation of DNV GL guidelines. The magnitude of the stress variation range and the corresponding number of counts are obtained by using the rain-flow counting algorithm. Finally, the Palmgren-Miner’s rule is adopted to calculate the cumulative damage ratio and the fatigue life can then be estimated. Fatigue damage ratio and structural fatigue life of each joint during 20 years of operation period are evaluated.\",\"PeriodicalId\":131294,\"journal\":{\"name\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/iowtc2019-7591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

海上风电系统遇到风、浪、流、土等环境荷载。支撑结构长期随机加载,更容易产生疲劳损伤。本文选取NREL 5MW风机和OC4夹套支撑结构进行时域疲劳分析。商业软件Bladed和SACS用于执行所需的结构响应和疲劳强度计算。根据DNV GL指南的推荐,采用应力集中系数(SCF)和S-N曲线进行管状节点应力计算。利用雨流计数算法得到应力变化范围的大小和相应的计数次数。最后,采用Palmgren-Miner规则计算累积损伤比,从而估算疲劳寿命。计算了各节点在20年运行期间的疲劳损伤比和结构疲劳寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Domain Fatigue Life Analysis of Offshore Jacket Structure
Offshore wind system encountered wind, wave, current, soil, and other environmental loads. The support structure is randomly loaded for a long time, which is more likely to cause fatigue damage. In this paper, the NREL 5MW wind turbine and OC4 jacket support structure is selected to perform the time domain fatigue analysis. Commercial software Bladed and SACS are used to perform the required structural responses and fatigue strength calculations. The Stress Concentration Factors (SCF) and S-N curves for the stress calculations of tubular joints are adopted based on the recommendation of DNV GL guidelines. The magnitude of the stress variation range and the corresponding number of counts are obtained by using the rain-flow counting algorithm. Finally, the Palmgren-Miner’s rule is adopted to calculate the cumulative damage ratio and the fatigue life can then be estimated. Fatigue damage ratio and structural fatigue life of each joint during 20 years of operation period are evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信