{"title":"上半身视频中手部检测与类型分类的混合方法","authors":"Katerina Papadimitriou, G. Potamianos","doi":"10.1109/EUVIP.2018.8611755","DOIUrl":null,"url":null,"abstract":"Detection of hands in videos and their classification into left and right types are crucial in various human-computer interaction and data mining systems. A variety of effective deep learning methods have been proposed for this task, such as region-based convolutional neural networks (R-CNNs), however the large number of their proposal windows per frame deem them computationally intensive. For this purpose we propose a hybrid approach that is based on substituting the “selective search” R-CNN module by an image processing pipeline assuming visibility of the facial region, as for example in signing and cued speech videos. Our system comprises two main phases: preprocessing and classification. In the preprocessing stage we incorporate facial information, obtained by an AdaBoost face detector, into a skin-tone based segmentation scheme that drives Kalman filtering based hand tracking, generating very few candidate windows. During classification, the extracted proposal regions are fed to a CNN for hand detection and type classification. Evaluation of the proposed hybrid approach on four well-known datasets of gestures and signing demonstrates its superior accuracy and computational efficiency over the R-CNN and its variants.","PeriodicalId":252212,"journal":{"name":"2018 7th European Workshop on Visual Information Processing (EUVIP)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hybrid Approach to Hand Detection and Type Classification in Upper-Body Videos\",\"authors\":\"Katerina Papadimitriou, G. Potamianos\",\"doi\":\"10.1109/EUVIP.2018.8611755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of hands in videos and their classification into left and right types are crucial in various human-computer interaction and data mining systems. A variety of effective deep learning methods have been proposed for this task, such as region-based convolutional neural networks (R-CNNs), however the large number of their proposal windows per frame deem them computationally intensive. For this purpose we propose a hybrid approach that is based on substituting the “selective search” R-CNN module by an image processing pipeline assuming visibility of the facial region, as for example in signing and cued speech videos. Our system comprises two main phases: preprocessing and classification. In the preprocessing stage we incorporate facial information, obtained by an AdaBoost face detector, into a skin-tone based segmentation scheme that drives Kalman filtering based hand tracking, generating very few candidate windows. During classification, the extracted proposal regions are fed to a CNN for hand detection and type classification. Evaluation of the proposed hybrid approach on four well-known datasets of gestures and signing demonstrates its superior accuracy and computational efficiency over the R-CNN and its variants.\",\"PeriodicalId\":252212,\"journal\":{\"name\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2018.8611755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2018.8611755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Approach to Hand Detection and Type Classification in Upper-Body Videos
Detection of hands in videos and their classification into left and right types are crucial in various human-computer interaction and data mining systems. A variety of effective deep learning methods have been proposed for this task, such as region-based convolutional neural networks (R-CNNs), however the large number of their proposal windows per frame deem them computationally intensive. For this purpose we propose a hybrid approach that is based on substituting the “selective search” R-CNN module by an image processing pipeline assuming visibility of the facial region, as for example in signing and cued speech videos. Our system comprises two main phases: preprocessing and classification. In the preprocessing stage we incorporate facial information, obtained by an AdaBoost face detector, into a skin-tone based segmentation scheme that drives Kalman filtering based hand tracking, generating very few candidate windows. During classification, the extracted proposal regions are fed to a CNN for hand detection and type classification. Evaluation of the proposed hybrid approach on four well-known datasets of gestures and signing demonstrates its superior accuracy and computational efficiency over the R-CNN and its variants.