手写文档中的统计文本行分析

Vicente Bosch, A. Rossi, E. Vidal
{"title":"手写文档中的统计文本行分析","authors":"Vicente Bosch, A. Rossi, E. Vidal","doi":"10.1109/ICFHR.2012.274","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for text line analysis and detection in handwritten documents based on Hidden Markov Models, a technique widely used in other handwritten and speech recognition tasks. It is shown that text line analysis and detection can be solved using a more formal methodology in contraposition to most of the proposed heuristic approaches found in the literature. Our approach not only provides the best position coordinates for each of the vertical page regions but also labels them, in this manner surpassing the traditional heuristic methods. In our experiments we demonstrate the performance of the approach (both in line analysis and detection) and study the impact of increasingly constrained \"vertical layout language models\" on text line detection accuracy. Through this experimentation we also show the improvement in quality of the baselines yielded by our approach in comparison with a state-of-the-art heuristic method based on vertical projection profiles.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Statistical Text Line Analysis in Handwritten Documents\",\"authors\":\"Vicente Bosch, A. Rossi, E. Vidal\",\"doi\":\"10.1109/ICFHR.2012.274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an approach for text line analysis and detection in handwritten documents based on Hidden Markov Models, a technique widely used in other handwritten and speech recognition tasks. It is shown that text line analysis and detection can be solved using a more formal methodology in contraposition to most of the proposed heuristic approaches found in the literature. Our approach not only provides the best position coordinates for each of the vertical page regions but also labels them, in this manner surpassing the traditional heuristic methods. In our experiments we demonstrate the performance of the approach (both in line analysis and detection) and study the impact of increasingly constrained \\\"vertical layout language models\\\" on text line detection accuracy. Through this experimentation we also show the improvement in quality of the baselines yielded by our approach in comparison with a state-of-the-art heuristic method based on vertical projection profiles.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们提出了一种基于隐马尔可夫模型的手写文档文本行分析和检测方法,该技术广泛应用于其他手写和语音识别任务。研究表明,文本行分析和检测可以使用更正式的方法来解决,而不是在文献中发现的大多数提出的启发式方法。我们的方法不仅为每个垂直页面区域提供最佳位置坐标,而且还标记它们,以这种方式超越了传统的启发式方法。在我们的实验中,我们展示了该方法的性能(包括行分析和检测),并研究了日益受限的“垂直布局语言模型”对文本行检测精度的影响。通过这个实验,我们还展示了与基于垂直投影轮廓的最先进的启发式方法相比,我们的方法产生的基线质量的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Text Line Analysis in Handwritten Documents
In this paper we present an approach for text line analysis and detection in handwritten documents based on Hidden Markov Models, a technique widely used in other handwritten and speech recognition tasks. It is shown that text line analysis and detection can be solved using a more formal methodology in contraposition to most of the proposed heuristic approaches found in the literature. Our approach not only provides the best position coordinates for each of the vertical page regions but also labels them, in this manner surpassing the traditional heuristic methods. In our experiments we demonstrate the performance of the approach (both in line analysis and detection) and study the impact of increasingly constrained "vertical layout language models" on text line detection accuracy. Through this experimentation we also show the improvement in quality of the baselines yielded by our approach in comparison with a state-of-the-art heuristic method based on vertical projection profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信