{"title":"平衡时变系统近似的稳定性","authors":"S. Shokoohi, L. Silverman, P. Dooren","doi":"10.1109/CDC.1980.271847","DOIUrl":null,"url":null,"abstract":"A uniformly balanced realization for time-varying systems is defined. Such a framework has many remarkable properties and leads to a natural setting for performing model reduction. It turns out that in many cases a reduced model preserves the properties of the original model. In this paper stability of the reduced systems is fully explored.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Stability of balanced time-variable system approximations\",\"authors\":\"S. Shokoohi, L. Silverman, P. Dooren\",\"doi\":\"10.1109/CDC.1980.271847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A uniformly balanced realization for time-varying systems is defined. Such a framework has many remarkable properties and leads to a natural setting for performing model reduction. It turns out that in many cases a reduced model preserves the properties of the original model. In this paper stability of the reduced systems is fully explored.\",\"PeriodicalId\":332964,\"journal\":{\"name\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1980.271847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.271847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability of balanced time-variable system approximations
A uniformly balanced realization for time-varying systems is defined. Such a framework has many remarkable properties and leads to a natural setting for performing model reduction. It turns out that in many cases a reduced model preserves the properties of the original model. In this paper stability of the reduced systems is fully explored.