{"title":"具有对合的α-自反环","authors":"Muna E. Abdulhafed, Aafaf E. Abduelhafid","doi":"10.54172/mjsc.v36i1.22","DOIUrl":null,"url":null,"abstract":"This paper studies the concept of the -quasi-*-IFP (resp., -*-reflexive) *-rings, as a generalization of the quasi-*-IFP (resp., *-reflexive) *-rings and every quasi-*-IFP (resp., *-reflexive) *-ring is -quasi-*-IFP (resp., -*-reflexive). This paper also discusses the sufficient condition for the quasi-*-IFP (resp., *-reflexive) *-ring in order to be -quasi-*-IFP (resp., -*- reflexive). Finally, this study investigates the -quasi-*-IFP (resp., -*-reflexivity) by using some types of the polynomial rings.","PeriodicalId":276609,"journal":{"name":"Al-Mukhtar Journal of Sciences","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"α-Reflexive Rings with Involution\",\"authors\":\"Muna E. Abdulhafed, Aafaf E. Abduelhafid\",\"doi\":\"10.54172/mjsc.v36i1.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the concept of the -quasi-*-IFP (resp., -*-reflexive) *-rings, as a generalization of the quasi-*-IFP (resp., *-reflexive) *-rings and every quasi-*-IFP (resp., *-reflexive) *-ring is -quasi-*-IFP (resp., -*-reflexive). This paper also discusses the sufficient condition for the quasi-*-IFP (resp., *-reflexive) *-ring in order to be -quasi-*-IFP (resp., -*- reflexive). Finally, this study investigates the -quasi-*-IFP (resp., -*-reflexivity) by using some types of the polynomial rings.\",\"PeriodicalId\":276609,\"journal\":{\"name\":\"Al-Mukhtar Journal of Sciences\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Mukhtar Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54172/mjsc.v36i1.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mukhtar Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54172/mjsc.v36i1.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper studies the concept of the -quasi-*-IFP (resp., -*-reflexive) *-rings, as a generalization of the quasi-*-IFP (resp., *-reflexive) *-rings and every quasi-*-IFP (resp., *-reflexive) *-ring is -quasi-*-IFP (resp., -*-reflexive). This paper also discusses the sufficient condition for the quasi-*-IFP (resp., *-reflexive) *-ring in order to be -quasi-*-IFP (resp., -*- reflexive). Finally, this study investigates the -quasi-*-IFP (resp., -*-reflexivity) by using some types of the polynomial rings.