对数美学曲线的变分公式

K. Miura, S. Usuki, R. Gobithaasan
{"title":"对数美学曲线的变分公式","authors":"K. Miura, S. Usuki, R. Gobithaasan","doi":"10.1145/2160749.2160793","DOIUrl":null,"url":null,"abstract":"The log-aesthetic curves include the logarithmic (equiangular) spiral, clothoid, and involute curves. Although most of them are expressed only by an integral form of the tangent vector, it is possible to interactively generate and deform them and they are expected to be utilized for practical use of industrial and graphical design. We reformulate the LA curve with variational principle in order to analyze its properties.","PeriodicalId":407345,"journal":{"name":"Joint International Conference on Human-Centered Computer Environments","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Variational formulation of the log-aesthetic curve\",\"authors\":\"K. Miura, S. Usuki, R. Gobithaasan\",\"doi\":\"10.1145/2160749.2160793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The log-aesthetic curves include the logarithmic (equiangular) spiral, clothoid, and involute curves. Although most of them are expressed only by an integral form of the tangent vector, it is possible to interactively generate and deform them and they are expected to be utilized for practical use of industrial and graphical design. We reformulate the LA curve with variational principle in order to analyze its properties.\",\"PeriodicalId\":407345,\"journal\":{\"name\":\"Joint International Conference on Human-Centered Computer Environments\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint International Conference on Human-Centered Computer Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2160749.2160793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint International Conference on Human-Centered Computer Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2160749.2160793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对数美学曲线包括对数(等角)螺旋曲线、仿线曲线和渐开线曲线。虽然它们中的大多数仅以切矢量的积分形式表示,但可以交互式地生成和变形它们,并且有望用于工业和图形设计的实际使用。为了分析LA曲线的性质,我们用变分原理对LA曲线进行了重新表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational formulation of the log-aesthetic curve
The log-aesthetic curves include the logarithmic (equiangular) spiral, clothoid, and involute curves. Although most of them are expressed only by an integral form of the tangent vector, it is possible to interactively generate and deform them and they are expected to be utilized for practical use of industrial and graphical design. We reformulate the LA curve with variational principle in order to analyze its properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信