基于状态-空间-节点实时求解器的高稳定旋转机械模型

C. Dufour
{"title":"基于状态-空间-节点实时求解器的高稳定旋转机械模型","authors":"C. Dufour","doi":"10.1109/CompEng.2018.8536236","DOIUrl":null,"url":null,"abstract":"This paper presents a set of rotating machine models, namely synchronous, asynchronous and permanent magnet synchronous machines, with increased stability characteristics compared to traditional state-space based methods. In this work, the machine models are all derived using the state-space-nodal (SSN) theory. This results in machine models that are stable without any parasitic load or numerical snubber. This is an important improvement for these models in solver packages based on the state-space approach, such as SimPowerSystems or PLECS.","PeriodicalId":194279,"journal":{"name":"2018 IEEE Workshop on Complexity in Engineering (COMPENG)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Highly Stable Rotating Machine Models Using the State-Space-Nodal Real-Time Solver\",\"authors\":\"C. Dufour\",\"doi\":\"10.1109/CompEng.2018.8536236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a set of rotating machine models, namely synchronous, asynchronous and permanent magnet synchronous machines, with increased stability characteristics compared to traditional state-space based methods. In this work, the machine models are all derived using the state-space-nodal (SSN) theory. This results in machine models that are stable without any parasitic load or numerical snubber. This is an important improvement for these models in solver packages based on the state-space approach, such as SimPowerSystems or PLECS.\",\"PeriodicalId\":194279,\"journal\":{\"name\":\"2018 IEEE Workshop on Complexity in Engineering (COMPENG)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Workshop on Complexity in Engineering (COMPENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CompEng.2018.8536236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Complexity in Engineering (COMPENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CompEng.2018.8536236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一套旋转电机模型,即同步、异步和永磁同步电机,与传统的基于状态空间的方法相比,具有更高的稳定性特性。在这项工作中,机器模型都是使用状态-空间-节点(SSN)理论推导的。这导致机器模型是稳定的,没有任何寄生负载或数值缓冲。这对于基于状态空间方法(如SimPowerSystems或PLECS)的求解器包中的这些模型是一个重要的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Stable Rotating Machine Models Using the State-Space-Nodal Real-Time Solver
This paper presents a set of rotating machine models, namely synchronous, asynchronous and permanent magnet synchronous machines, with increased stability characteristics compared to traditional state-space based methods. In this work, the machine models are all derived using the state-space-nodal (SSN) theory. This results in machine models that are stable without any parasitic load or numerical snubber. This is an important improvement for these models in solver packages based on the state-space approach, such as SimPowerSystems or PLECS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信