Michel Gangnet, J. Hervé, T. Pudet, Jean-Manuel Van Thong
{"title":"平面地图的增量计算","authors":"Michel Gangnet, J. Hervé, T. Pudet, Jean-Manuel Van Thong","doi":"10.1145/74333.74369","DOIUrl":null,"url":null,"abstract":"A planar map is a figure formed by a set of intersecting lines and curves. Such an object captures both the geometrical and the topological information implicitly defined by the data. In the context of 2D drawing it provides a new interaction paradigm, map sketching, for editing graphic shapes.To build a planar map, one must compute curve intersections and deduce from them the map they define. The computed topology must be consistent with the underlying geometry. Robustness of geometric computations is a key issue in this process. We present a robust solution to Bézier curve intersection that uses exact forward differencing and bounded rational arithmetic. Then, we describe data structure and algorithms to support incremental insertion of Bézier curves in a planar map. A prototype illustration tool using this method is also discussed.","PeriodicalId":422743,"journal":{"name":"Proceedings of the 16th annual conference on Computer graphics and interactive techniques","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Incremental computation of planar maps\",\"authors\":\"Michel Gangnet, J. Hervé, T. Pudet, Jean-Manuel Van Thong\",\"doi\":\"10.1145/74333.74369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A planar map is a figure formed by a set of intersecting lines and curves. Such an object captures both the geometrical and the topological information implicitly defined by the data. In the context of 2D drawing it provides a new interaction paradigm, map sketching, for editing graphic shapes.To build a planar map, one must compute curve intersections and deduce from them the map they define. The computed topology must be consistent with the underlying geometry. Robustness of geometric computations is a key issue in this process. We present a robust solution to Bézier curve intersection that uses exact forward differencing and bounded rational arithmetic. Then, we describe data structure and algorithms to support incremental insertion of Bézier curves in a planar map. A prototype illustration tool using this method is also discussed.\",\"PeriodicalId\":422743,\"journal\":{\"name\":\"Proceedings of the 16th annual conference on Computer graphics and interactive techniques\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/74333.74369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/74333.74369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A planar map is a figure formed by a set of intersecting lines and curves. Such an object captures both the geometrical and the topological information implicitly defined by the data. In the context of 2D drawing it provides a new interaction paradigm, map sketching, for editing graphic shapes.To build a planar map, one must compute curve intersections and deduce from them the map they define. The computed topology must be consistent with the underlying geometry. Robustness of geometric computations is a key issue in this process. We present a robust solution to Bézier curve intersection that uses exact forward differencing and bounded rational arithmetic. Then, we describe data structure and algorithms to support incremental insertion of Bézier curves in a planar map. A prototype illustration tool using this method is also discussed.