基于句子bert的设计信息检索语义搜索

Hannah S. Walsh, Sequoia R. Andrade
{"title":"基于句子bert的设计信息检索语义搜索","authors":"Hannah S. Walsh, Sequoia R. Andrade","doi":"10.1115/detc2022-89557","DOIUrl":null,"url":null,"abstract":"Managing and referencing design knowledge is a critical activity in the design process. However, reliably retrieving useful knowledge can be a frustrating experience for users of knowledge management systems due to inherent limitations of standard keyword-based searches. In this research, we consider the task of retrieving relevant lessons learned from the NASA Lessons Learned Information System (LLIS). To this end, we apply a state-of-the-art natural language processing (NLP) technique for information retrieval (IR): semantic search with sentence-BERT, which is a modification of a Bidirectional Encoder Representations from Transformers (BERT) model that uses siamese and triplet network architectures to obtain semantically meaningful sentence embeddings. While the pre-trained sBERT model performs well out-of-the-box, we further fine-tune the model on data from the LLIS so that it learns on design engineering-relevant vocabulary. We quantify the improvement in query results using both standard sBERT and fine-tuned sBERT over a keyword search. Our use case throughout the paper is to use queries related to specific requirements from a NASA project. Fine tuning the sBERT model on LLIS data yields a mean average precision (MAP) of 0.807 on queries based on information needs from a real NASA project. Results indicate that applying state-of-the-art natural language processing techniques, especially when fine-tuned using engineering data, to design information retrieval tasks shows significant promise in modernizing design knowledge management systems.","PeriodicalId":382970,"journal":{"name":"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semantic Search With Sentence-BERT for Design Information Retrieval\",\"authors\":\"Hannah S. Walsh, Sequoia R. Andrade\",\"doi\":\"10.1115/detc2022-89557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Managing and referencing design knowledge is a critical activity in the design process. However, reliably retrieving useful knowledge can be a frustrating experience for users of knowledge management systems due to inherent limitations of standard keyword-based searches. In this research, we consider the task of retrieving relevant lessons learned from the NASA Lessons Learned Information System (LLIS). To this end, we apply a state-of-the-art natural language processing (NLP) technique for information retrieval (IR): semantic search with sentence-BERT, which is a modification of a Bidirectional Encoder Representations from Transformers (BERT) model that uses siamese and triplet network architectures to obtain semantically meaningful sentence embeddings. While the pre-trained sBERT model performs well out-of-the-box, we further fine-tune the model on data from the LLIS so that it learns on design engineering-relevant vocabulary. We quantify the improvement in query results using both standard sBERT and fine-tuned sBERT over a keyword search. Our use case throughout the paper is to use queries related to specific requirements from a NASA project. Fine tuning the sBERT model on LLIS data yields a mean average precision (MAP) of 0.807 on queries based on information needs from a real NASA project. Results indicate that applying state-of-the-art natural language processing techniques, especially when fine-tuned using engineering data, to design information retrieval tasks shows significant promise in modernizing design knowledge management systems.\",\"PeriodicalId\":382970,\"journal\":{\"name\":\"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2022-89557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2022-89557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

管理和参考设计知识是设计过程中的一项关键活动。然而,由于标准的基于关键字的搜索的固有限制,可靠地检索有用的知识对于知识管理系统的用户来说可能是一种令人沮丧的体验。在本研究中,我们考虑从NASA经验教训信息系统(LLIS)中检索相关经验教训的任务。为此,我们应用最先进的自然语言处理(NLP)技术进行信息检索(IR):使用句子BERT进行语义搜索,这是对双向编码器表示(BERT)模型的修改,该模型使用连体和三重网络架构来获得语义上有意义的句子嵌入。虽然预训练的sBERT模型开箱即用,但我们进一步根据LLIS的数据对模型进行微调,以便它学习与设计工程相关的词汇。我们使用标准sBERT和对关键字搜索进行微调的sBERT来量化查询结果的改进。我们在本文中的用例是使用与NASA项目的特定需求相关的查询。在LLIS数据上对sBERT模型进行微调,在基于真实NASA项目的信息需求进行查询时,平均精度(MAP)为0.807。结果表明,应用最先进的自然语言处理技术,特别是当使用工程数据进行微调时,设计信息检索任务在现代化设计知识管理系统中显示出重大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Search With Sentence-BERT for Design Information Retrieval
Managing and referencing design knowledge is a critical activity in the design process. However, reliably retrieving useful knowledge can be a frustrating experience for users of knowledge management systems due to inherent limitations of standard keyword-based searches. In this research, we consider the task of retrieving relevant lessons learned from the NASA Lessons Learned Information System (LLIS). To this end, we apply a state-of-the-art natural language processing (NLP) technique for information retrieval (IR): semantic search with sentence-BERT, which is a modification of a Bidirectional Encoder Representations from Transformers (BERT) model that uses siamese and triplet network architectures to obtain semantically meaningful sentence embeddings. While the pre-trained sBERT model performs well out-of-the-box, we further fine-tune the model on data from the LLIS so that it learns on design engineering-relevant vocabulary. We quantify the improvement in query results using both standard sBERT and fine-tuned sBERT over a keyword search. Our use case throughout the paper is to use queries related to specific requirements from a NASA project. Fine tuning the sBERT model on LLIS data yields a mean average precision (MAP) of 0.807 on queries based on information needs from a real NASA project. Results indicate that applying state-of-the-art natural language processing techniques, especially when fine-tuned using engineering data, to design information retrieval tasks shows significant promise in modernizing design knowledge management systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信