无线设备无源指纹识别:多层次决策方法

Chao Shen, Ruiyuan Lu, Saeid Samizade, Liang He
{"title":"无线设备无源指纹识别:多层次决策方法","authors":"Chao Shen, Ruiyuan Lu, Saeid Samizade, Liang He","doi":"10.1109/ISBA.2017.7947689","DOIUrl":null,"url":null,"abstract":"Passive wireless-device fingerprinting - the act of passively and automatically identifying specific types of wireless devices through sequential analysis of wireless traffic - is useful for network monitoring and management. This study presents a novel passive fingerprinting approach for wireless devices, by modeling network traffic with carefully chosen wireless parameters from 802.11 frames, and developing multi-level classification algorithm to perform task of device fingerprinting. Specifically, we systematically evaluate a set of traffic parameters with respect to their stability and discriminability of identifying wireless devices. We employ a distribution-based measurement to obtain signature for each wireless device. We then develop a decision-tree-based multi-level classifier for device fingerprinting. Experimental results show that the parameters of transmission time and inter-arrival time are much more stable for device fingerprinting, and the approach achieves a practically useful level of performance.","PeriodicalId":436086,"journal":{"name":"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Passive fingerprinting for wireless devices: A multi-level decision approach\",\"authors\":\"Chao Shen, Ruiyuan Lu, Saeid Samizade, Liang He\",\"doi\":\"10.1109/ISBA.2017.7947689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive wireless-device fingerprinting - the act of passively and automatically identifying specific types of wireless devices through sequential analysis of wireless traffic - is useful for network monitoring and management. This study presents a novel passive fingerprinting approach for wireless devices, by modeling network traffic with carefully chosen wireless parameters from 802.11 frames, and developing multi-level classification algorithm to perform task of device fingerprinting. Specifically, we systematically evaluate a set of traffic parameters with respect to their stability and discriminability of identifying wireless devices. We employ a distribution-based measurement to obtain signature for each wireless device. We then develop a decision-tree-based multi-level classifier for device fingerprinting. Experimental results show that the parameters of transmission time and inter-arrival time are much more stable for device fingerprinting, and the approach achieves a practically useful level of performance.\",\"PeriodicalId\":436086,\"journal\":{\"name\":\"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2017.7947689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2017.7947689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无源无线设备指纹识别——通过对无线流量的顺序分析被动地自动识别特定类型的无线设备的行为——对网络监控和管理很有用。本研究提出了一种新的无线设备被动指纹识别方法,通过从802.11帧中精心选择无线参数对网络流量进行建模,并开发多层次分类算法来执行设备指纹识别任务。具体而言,我们系统地评估了一组流量参数的稳定性和识别无线设备的可辨别性。我们采用基于分布的测量来获取每个无线设备的签名。然后,我们为设备指纹识别开发了一个基于决策树的多级分类器。实验结果表明,该方法对设备指纹识别的传输时间和到达间隔时间参数具有较好的稳定性,达到了实用的性能水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive fingerprinting for wireless devices: A multi-level decision approach
Passive wireless-device fingerprinting - the act of passively and automatically identifying specific types of wireless devices through sequential analysis of wireless traffic - is useful for network monitoring and management. This study presents a novel passive fingerprinting approach for wireless devices, by modeling network traffic with carefully chosen wireless parameters from 802.11 frames, and developing multi-level classification algorithm to perform task of device fingerprinting. Specifically, we systematically evaluate a set of traffic parameters with respect to their stability and discriminability of identifying wireless devices. We employ a distribution-based measurement to obtain signature for each wireless device. We then develop a decision-tree-based multi-level classifier for device fingerprinting. Experimental results show that the parameters of transmission time and inter-arrival time are much more stable for device fingerprinting, and the approach achieves a practically useful level of performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信