{"title":"惊吓或愉悦:利用图像的情感影响","authors":"Bing Li, Songhe Feng, Weihua Xiong, Weiming Hu","doi":"10.1145/2393347.2396487","DOIUrl":null,"url":null,"abstract":"Automatic image emotion analysis has emerged as a hot topic due to its potential application on high-level image understanding. Considering the fact that the emotion evoked by an image is not only from its global appearance but also interplays among local regions, we propose a novel affective image classification system based on bilayer sparse representation (BSR). The BSR model contains two layers: The global sparse representation (GSR) is to define global similarities between a test image and all the training images; and the local sparse representation (LSR) is to define similarities of local regions' appearances and their co-occurrence between a test image and all the training images. The experiments on real data sets demonstrate that our system is effective on image emotion recognition.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Scaring or pleasing: exploit emotional impact of an image\",\"authors\":\"Bing Li, Songhe Feng, Weihua Xiong, Weiming Hu\",\"doi\":\"10.1145/2393347.2396487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic image emotion analysis has emerged as a hot topic due to its potential application on high-level image understanding. Considering the fact that the emotion evoked by an image is not only from its global appearance but also interplays among local regions, we propose a novel affective image classification system based on bilayer sparse representation (BSR). The BSR model contains two layers: The global sparse representation (GSR) is to define global similarities between a test image and all the training images; and the local sparse representation (LSR) is to define similarities of local regions' appearances and their co-occurrence between a test image and all the training images. The experiments on real data sets demonstrate that our system is effective on image emotion recognition.\",\"PeriodicalId\":212654,\"journal\":{\"name\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2393347.2396487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scaring or pleasing: exploit emotional impact of an image
Automatic image emotion analysis has emerged as a hot topic due to its potential application on high-level image understanding. Considering the fact that the emotion evoked by an image is not only from its global appearance but also interplays among local regions, we propose a novel affective image classification system based on bilayer sparse representation (BSR). The BSR model contains two layers: The global sparse representation (GSR) is to define global similarities between a test image and all the training images; and the local sparse representation (LSR) is to define similarities of local regions' appearances and their co-occurrence between a test image and all the training images. The experiments on real data sets demonstrate that our system is effective on image emotion recognition.