{"title":"用于超低功耗VLSI的硅化超薄冲击电离MOS (SUTIMOS)","authors":"Ankit Dixit, Rajeewa Kumar Jaisawal, Sunil Rathore, Suneet Kumar Agnihotri, P. Kondekar","doi":"10.1109/CAPS52117.2021.9730672","DOIUrl":null,"url":null,"abstract":"In this article, Impact Ionization Metal Oxide Semiconductor (IMOS) device is investigated with silicide source material. A comparatively study of Silicide Ultrathin Impact Ionization MOS (SUTIMOS), with conventional IMOS and earlier proposed UTIMOS was also done based on the device parameters such as electric field, impact ionization rate, band diagram, and the current density. Effect of the schottky height of silicide material was also performed on the transfer and output characteristic of the device. All the study has been performed on the sentaurus 2D device simulator TCAD tool.","PeriodicalId":445427,"journal":{"name":"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)","volume":"29 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicide Ultrathin Impact Ionization MOS (SUTIMOS) for Ultra Low Power VLSI Application\",\"authors\":\"Ankit Dixit, Rajeewa Kumar Jaisawal, Sunil Rathore, Suneet Kumar Agnihotri, P. Kondekar\",\"doi\":\"10.1109/CAPS52117.2021.9730672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, Impact Ionization Metal Oxide Semiconductor (IMOS) device is investigated with silicide source material. A comparatively study of Silicide Ultrathin Impact Ionization MOS (SUTIMOS), with conventional IMOS and earlier proposed UTIMOS was also done based on the device parameters such as electric field, impact ionization rate, band diagram, and the current density. Effect of the schottky height of silicide material was also performed on the transfer and output characteristic of the device. All the study has been performed on the sentaurus 2D device simulator TCAD tool.\",\"PeriodicalId\":445427,\"journal\":{\"name\":\"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)\",\"volume\":\"29 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAPS52117.2021.9730672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAPS52117.2021.9730672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicide Ultrathin Impact Ionization MOS (SUTIMOS) for Ultra Low Power VLSI Application
In this article, Impact Ionization Metal Oxide Semiconductor (IMOS) device is investigated with silicide source material. A comparatively study of Silicide Ultrathin Impact Ionization MOS (SUTIMOS), with conventional IMOS and earlier proposed UTIMOS was also done based on the device parameters such as electric field, impact ionization rate, band diagram, and the current density. Effect of the schottky height of silicide material was also performed on the transfer and output characteristic of the device. All the study has been performed on the sentaurus 2D device simulator TCAD tool.