Lian Yu, Qi Jing, Ruomiao Li, Zhiya Cheng, Chang Xu
{"title":"基于图神经网络的异常事务检测","authors":"Lian Yu, Qi Jing, Ruomiao Li, Zhiya Cheng, Chang Xu","doi":"10.1109/QRS57517.2022.00085","DOIUrl":null,"url":null,"abstract":"This paper improves GraphSAGE from two aspects: 1) performing a sampling compensation before the training to avoid the possible information losses due to the sampling; and 2) adding a hopping connection with the initial inputs in the aggregating phase to avert the potential loss of the initial features of nodes. The empirical study shows that FastGCN can obtain a relatively higher recall of detection but with a lower precision due to its randomness of Monte-Carlo methods and ignoring the special impacts of neighbors; while the improved GraphSAGE gets a relatively higher precision of detection but with a lower recall due to only focusing on neighbors. This paper proposes a graph-based approach to improve both precision and recall of the abnormal transaction detection by hybridizing the improved GraphSAGE with FastGCN, called ParGCN (Precision and recall), describes the mathematical formulas of the hybrid model, and analyzes the time complexity. A set of experiments on the two data-sets with significant differences of the numbers of features are performed to compare and evaluate the proposed approach to demonstrate the validity in terms of the precision and recall.","PeriodicalId":143812,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ParGCN: Abnormal Transaction Detection based on Graph Neural Networks\",\"authors\":\"Lian Yu, Qi Jing, Ruomiao Li, Zhiya Cheng, Chang Xu\",\"doi\":\"10.1109/QRS57517.2022.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper improves GraphSAGE from two aspects: 1) performing a sampling compensation before the training to avoid the possible information losses due to the sampling; and 2) adding a hopping connection with the initial inputs in the aggregating phase to avert the potential loss of the initial features of nodes. The empirical study shows that FastGCN can obtain a relatively higher recall of detection but with a lower precision due to its randomness of Monte-Carlo methods and ignoring the special impacts of neighbors; while the improved GraphSAGE gets a relatively higher precision of detection but with a lower recall due to only focusing on neighbors. This paper proposes a graph-based approach to improve both precision and recall of the abnormal transaction detection by hybridizing the improved GraphSAGE with FastGCN, called ParGCN (Precision and recall), describes the mathematical formulas of the hybrid model, and analyzes the time complexity. A set of experiments on the two data-sets with significant differences of the numbers of features are performed to compare and evaluate the proposed approach to demonstrate the validity in terms of the precision and recall.\",\"PeriodicalId\":143812,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS57517.2022.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS57517.2022.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文从两个方面对GraphSAGE进行改进:1)在训练前进行采样补偿,避免采样可能造成的信息损失;2)在聚合阶段的初始输入中加入跳跃连接,避免节点初始特征的潜在损失。实证研究表明,FastGCN由于蒙特卡罗方法的随机性和忽略了邻居的特殊影响,可以获得较高的检测召回率,但精度较低;而改进的GraphSAGE检测精度相对较高,但由于只关注邻居,召回率较低。本文提出了一种基于图的方法,通过将改进的GraphSAGE与FastGCN (precision and recall)相结合,提高异常事务检测的准确率和召回率,称为ParGCN (precision and recall),描述了混合模型的数学公式,并分析了时间复杂度。在特征数量存在显著差异的两组数据集上进行了一组实验,比较和评估了所提出的方法在查准率和查全率方面的有效性。
ParGCN: Abnormal Transaction Detection based on Graph Neural Networks
This paper improves GraphSAGE from two aspects: 1) performing a sampling compensation before the training to avoid the possible information losses due to the sampling; and 2) adding a hopping connection with the initial inputs in the aggregating phase to avert the potential loss of the initial features of nodes. The empirical study shows that FastGCN can obtain a relatively higher recall of detection but with a lower precision due to its randomness of Monte-Carlo methods and ignoring the special impacts of neighbors; while the improved GraphSAGE gets a relatively higher precision of detection but with a lower recall due to only focusing on neighbors. This paper proposes a graph-based approach to improve both precision and recall of the abnormal transaction detection by hybridizing the improved GraphSAGE with FastGCN, called ParGCN (Precision and recall), describes the mathematical formulas of the hybrid model, and analyzes the time complexity. A set of experiments on the two data-sets with significant differences of the numbers of features are performed to compare and evaluate the proposed approach to demonstrate the validity in terms of the precision and recall.