基于密度的时空数据算法

Mohd. Yousuf Ansari, Mainuddin, Anand Prakash
{"title":"基于密度的时空数据算法","authors":"Mohd. Yousuf Ansari, Mainuddin, Anand Prakash","doi":"10.1109/ICCCIS48478.2019.8974471","DOIUrl":null,"url":null,"abstract":"Clustering is a method to discover inherent natural structure in a set of objects involved in any phenomenon. In this study, we extended DBSCAN algorithm for spatiotemporal data by defining attribute based mass function, density function and hence modifying definition of core objects for clustering. The proposed work generalizes the concept of using an attribute to define notion of relative importance of an object to define density in the dataset. We have used a real fire dataset to validate the proposed approach. We also compare our algorithm with DBSCAN based algorithm which is extended for spatiotemporal data. The experimental results reveal that our proposed algorithm is able to identify intrinsic information based hidden clusters, which DBSCAN based algorithm is unable to identify.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density Based Algorithm for Spatiotemporal Data\",\"authors\":\"Mohd. Yousuf Ansari, Mainuddin, Anand Prakash\",\"doi\":\"10.1109/ICCCIS48478.2019.8974471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is a method to discover inherent natural structure in a set of objects involved in any phenomenon. In this study, we extended DBSCAN algorithm for spatiotemporal data by defining attribute based mass function, density function and hence modifying definition of core objects for clustering. The proposed work generalizes the concept of using an attribute to define notion of relative importance of an object to define density in the dataset. We have used a real fire dataset to validate the proposed approach. We also compare our algorithm with DBSCAN based algorithm which is extended for spatiotemporal data. The experimental results reveal that our proposed algorithm is able to identify intrinsic information based hidden clusters, which DBSCAN based algorithm is unable to identify.\",\"PeriodicalId\":436154,\"journal\":{\"name\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCIS48478.2019.8974471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类是一种发现任何现象所涉及的一组对象的内在自然结构的方法。本文通过定义基于属性的质量函数和密度函数,对DBSCAN算法进行了扩展,从而修改了核心对象的聚类定义。提出的工作推广了使用属性来定义对象相对重要性的概念来定义数据集中密度的概念。我们使用了一个真实的火灾数据集来验证所提出的方法。并将该算法与扩展到时空数据的基于DBSCAN的算法进行了比较。实验结果表明,该算法能够识别基于内在信息的隐聚类,这是基于DBSCAN算法无法识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density Based Algorithm for Spatiotemporal Data
Clustering is a method to discover inherent natural structure in a set of objects involved in any phenomenon. In this study, we extended DBSCAN algorithm for spatiotemporal data by defining attribute based mass function, density function and hence modifying definition of core objects for clustering. The proposed work generalizes the concept of using an attribute to define notion of relative importance of an object to define density in the dataset. We have used a real fire dataset to validate the proposed approach. We also compare our algorithm with DBSCAN based algorithm which is extended for spatiotemporal data. The experimental results reveal that our proposed algorithm is able to identify intrinsic information based hidden clusters, which DBSCAN based algorithm is unable to identify.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信