一种新的多光谱图像描述子优化方法

Z. Fu, B. Luo, Chun Wu, Q. Qin
{"title":"一种新的多光谱图像描述子优化方法","authors":"Z. Fu, B. Luo, Chun Wu, Q. Qin","doi":"10.1109/CITS.2016.7546457","DOIUrl":null,"url":null,"abstract":"This paper presents an optimized descriptor method for multispectral images. The method proposed is based on LGHD (Log-Gabor Histogram Descriptor)[1]. Initially, all feature points are detected from Long wave Infrared and Visible spectrum images, and descripted by LGHD, then PCA (Principal Component Analysis) is used to reduce the dimension of the two different descriptors, finally the optimized descriptors are used to match the points. Experimental results show that proposed approach achieves a better matching performance than LGHD.","PeriodicalId":340958,"journal":{"name":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel descriptor optimization method for multispectral images\",\"authors\":\"Z. Fu, B. Luo, Chun Wu, Q. Qin\",\"doi\":\"10.1109/CITS.2016.7546457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimized descriptor method for multispectral images. The method proposed is based on LGHD (Log-Gabor Histogram Descriptor)[1]. Initially, all feature points are detected from Long wave Infrared and Visible spectrum images, and descripted by LGHD, then PCA (Principal Component Analysis) is used to reduce the dimension of the two different descriptors, finally the optimized descriptors are used to match the points. Experimental results show that proposed approach achieves a better matching performance than LGHD.\",\"PeriodicalId\":340958,\"journal\":{\"name\":\"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITS.2016.7546457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITS.2016.7546457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种优化的多光谱图像描述符方法。提出的方法基于LGHD (Log-Gabor直方图描述符)[1]。首先从长波红外和可见光谱图像中检测到所有特征点,并对其进行LGHD描述,然后使用主成分分析(PCA)对两种不同描述符进行降维,最后使用优化后的描述符进行点匹配。实验结果表明,该方法比LGHD具有更好的匹配性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel descriptor optimization method for multispectral images
This paper presents an optimized descriptor method for multispectral images. The method proposed is based on LGHD (Log-Gabor Histogram Descriptor)[1]. Initially, all feature points are detected from Long wave Infrared and Visible spectrum images, and descripted by LGHD, then PCA (Principal Component Analysis) is used to reduce the dimension of the two different descriptors, finally the optimized descriptors are used to match the points. Experimental results show that proposed approach achieves a better matching performance than LGHD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信