Mohammad Motiur Rahman, P. K. M. Kumar, Md. Gauhar Arefin, Mohammad Shorif Uddin
{"title":"基于位平面切片和非线性扩散的超声图像散斑降噪方法","authors":"Mohammad Motiur Rahman, P. K. M. Kumar, Md. Gauhar Arefin, Mohammad Shorif Uddin","doi":"10.1109/ICCITECHN.2012.6509760","DOIUrl":null,"url":null,"abstract":"In this paper we present and evaluate a novel method for an efficient speckle denoising by using principal component analysis (PCA) with bit plane slicing and nonlinear diffusion. We use PCA transformation for generating de-correlated dataset from a noisy image. Then we apply bit plane slicing on the de-correlated dataset and nonlinear diffusion is applied on each bit plane. For nonlinear diffusion in each bit plane level, a gradient threshold is automatically estimated. Add up all bit plane slice after nonlinear diffusion execution and then we implement inverse principal component analysis for making denoised images. The proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging compared with state-of-the-art speckle denoising algorithms.","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Speckle noise reduction from ultrasound images using principal component analysis with bit plane slicing and nonlinear diffusion method\",\"authors\":\"Mohammad Motiur Rahman, P. K. M. Kumar, Md. Gauhar Arefin, Mohammad Shorif Uddin\",\"doi\":\"10.1109/ICCITECHN.2012.6509760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present and evaluate a novel method for an efficient speckle denoising by using principal component analysis (PCA) with bit plane slicing and nonlinear diffusion. We use PCA transformation for generating de-correlated dataset from a noisy image. Then we apply bit plane slicing on the de-correlated dataset and nonlinear diffusion is applied on each bit plane. For nonlinear diffusion in each bit plane level, a gradient threshold is automatically estimated. Add up all bit plane slice after nonlinear diffusion execution and then we implement inverse principal component analysis for making denoised images. The proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging compared with state-of-the-art speckle denoising algorithms.\",\"PeriodicalId\":127060,\"journal\":{\"name\":\"2012 15th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 15th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2012.6509760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speckle noise reduction from ultrasound images using principal component analysis with bit plane slicing and nonlinear diffusion method
In this paper we present and evaluate a novel method for an efficient speckle denoising by using principal component analysis (PCA) with bit plane slicing and nonlinear diffusion. We use PCA transformation for generating de-correlated dataset from a noisy image. Then we apply bit plane slicing on the de-correlated dataset and nonlinear diffusion is applied on each bit plane. For nonlinear diffusion in each bit plane level, a gradient threshold is automatically estimated. Add up all bit plane slice after nonlinear diffusion execution and then we implement inverse principal component analysis for making denoised images. The proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging compared with state-of-the-art speckle denoising algorithms.