可视化概述:使用现代文本挖掘技术为可视化研究实践提供见解

A. Figueiras
{"title":"可视化概述:使用现代文本挖掘技术为可视化研究实践提供见解","authors":"A. Figueiras","doi":"10.1109/IV56949.2022.00026","DOIUrl":null,"url":null,"abstract":"We take a new approach to analyze what the general focus of Visualization research is, among the panoply of different topics and approaches. Due to the intrinsic characteristics of this kind of in-depth research, being often too time-consuming and difficult to carry, we resort to text mining techniques to streamline this analysis. This study was carried out by applying topic modeling for discovering the abstract topics that occur in visualization papers. The study used the vispubdata.org dataset as the reference to gather almost every paper presented, from 1990 to 2018, at the IEEE Visualization (VIS) set of conferences: InfoVis, SciVis, VAST, and Vis. We requested ten topics and assigned each one its ten most important and representative terms. With this analysis, we intend to envelop the current practices in the visualization research community.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization overview: Using modern text mining techniques to provide insight into visualization research practice\",\"authors\":\"A. Figueiras\",\"doi\":\"10.1109/IV56949.2022.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We take a new approach to analyze what the general focus of Visualization research is, among the panoply of different topics and approaches. Due to the intrinsic characteristics of this kind of in-depth research, being often too time-consuming and difficult to carry, we resort to text mining techniques to streamline this analysis. This study was carried out by applying topic modeling for discovering the abstract topics that occur in visualization papers. The study used the vispubdata.org dataset as the reference to gather almost every paper presented, from 1990 to 2018, at the IEEE Visualization (VIS) set of conferences: InfoVis, SciVis, VAST, and Vis. We requested ten topics and assigned each one its ten most important and representative terms. With this analysis, we intend to envelop the current practices in the visualization research community.\",\"PeriodicalId\":153161,\"journal\":{\"name\":\"2022 26th International Conference Information Visualisation (IV)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV56949.2022.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们采取了一种新的方法来分析可视化研究的总体焦点是什么,在不同的主题和方法中。由于这种深入研究的固有特点,往往过于耗时和难以进行,我们采用文本挖掘技术来简化这种分析。本研究采用主题建模来发现可视化论文中出现的抽象主题。该研究使用vispubdata.org数据集作为参考,收集了1990年至2018年IEEE可视化(VIS)系列会议(InfoVis、SciVis、VAST和VIS)上发表的几乎所有论文。我们请求了10个主题,并为每个主题分配了10个最重要和最具代表性的术语。通过这一分析,我们打算概括可视化研究社区的当前实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization overview: Using modern text mining techniques to provide insight into visualization research practice
We take a new approach to analyze what the general focus of Visualization research is, among the panoply of different topics and approaches. Due to the intrinsic characteristics of this kind of in-depth research, being often too time-consuming and difficult to carry, we resort to text mining techniques to streamline this analysis. This study was carried out by applying topic modeling for discovering the abstract topics that occur in visualization papers. The study used the vispubdata.org dataset as the reference to gather almost every paper presented, from 1990 to 2018, at the IEEE Visualization (VIS) set of conferences: InfoVis, SciVis, VAST, and Vis. We requested ten topics and assigned each one its ten most important and representative terms. With this analysis, we intend to envelop the current practices in the visualization research community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信