平面团簇B11、B12和B13在中性和带电状态下的相对稳定性

L. Chkhartishvili
{"title":"平面团簇B11、B12和B13在中性和带电状态下的相对稳定性","authors":"L. Chkhartishvili","doi":"10.24294/CAN.V0I0.761","DOIUrl":null,"url":null,"abstract":"Theoretically, within the diatomic model, there is studied the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positively and negatively charge-states. According to the specific (pet atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemically inertness, neutron-absorption, etc. making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.","PeriodicalId":331072,"journal":{"name":"Characterization and Application of Nanomaterials","volume":"463 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Relative stability of planar clusters B11, B12, and B13 in neutral- and charged-states\",\"authors\":\"L. Chkhartishvili\",\"doi\":\"10.24294/CAN.V0I0.761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretically, within the diatomic model, there is studied the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positively and negatively charge-states. According to the specific (pet atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemically inertness, neutron-absorption, etc. making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.\",\"PeriodicalId\":331072,\"journal\":{\"name\":\"Characterization and Application of Nanomaterials\",\"volume\":\"463 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Characterization and Application of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/CAN.V0I0.761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Characterization and Application of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/CAN.V0I0.761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

理论上,在双原子模型中,研究了最丰富的硼团簇B11、B12和B13在中性、正电荷和负电荷状态下的相对稳定性。根据特定(pet原子)结合能标准,发现B12+ (6.49 eV)是最稳定的硼团簇,而B11 - + B13+ (5.83 eV)中性对有望成为富硼固体的首选烧蚀通道。所获得的结果将适用于生产具有超性能的硼簇基纳米结构涂层材料,如轻质,硬度,导电性,化学惰性,中子吸收等,使其特别有效地防止开裂,磨损,腐蚀,中子和电磁辐射等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative stability of planar clusters B11, B12, and B13 in neutral- and charged-states
Theoretically, within the diatomic model, there is studied the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positively and negatively charge-states. According to the specific (pet atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemically inertness, neutron-absorption, etc. making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信