近似解

G. Mussardo
{"title":"近似解","authors":"G. Mussardo","doi":"10.1093/oso/9780198788102.003.0003","DOIUrl":null,"url":null,"abstract":"Chapter 3 discusses the approximation schemes used to approach lattice statistical models that are not exactly solvable. In addition to the mean field approximation, it also considers the Bethe–Peierls approach to the Ising model. Moreover, there is a thorough discussion of the Gaussian model and its spherical version, both of which are two important systems with several points of interest. A chapter appendix provides a detailed analysis of the random walk on different lattices: apart from the importance of the subject on its own, it explains how the random walk is responsible for the critical properties of the spherical model.","PeriodicalId":172128,"journal":{"name":"Statistical Field Theory","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Approximate Solutions\",\"authors\":\"G. Mussardo\",\"doi\":\"10.1093/oso/9780198788102.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chapter 3 discusses the approximation schemes used to approach lattice statistical models that are not exactly solvable. In addition to the mean field approximation, it also considers the Bethe–Peierls approach to the Ising model. Moreover, there is a thorough discussion of the Gaussian model and its spherical version, both of which are two important systems with several points of interest. A chapter appendix provides a detailed analysis of the random walk on different lattices: apart from the importance of the subject on its own, it explains how the random walk is responsible for the critical properties of the spherical model.\",\"PeriodicalId\":172128,\"journal\":{\"name\":\"Statistical Field Theory\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Field Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198788102.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Field Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198788102.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

第3章讨论了用于逼近不完全可解的点阵统计模型的近似方案。除了平均场近似之外,它还考虑了伊辛模型的Bethe-Peierls方法。此外,还对高斯模型及其球形模型进行了深入的讨论,它们都是两个重要的系统,有几个有趣的点。附录一章提供了不同格上随机游走的详细分析:除了该主题本身的重要性之外,它还解释了随机游走如何负责球形模型的关键特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Solutions
Chapter 3 discusses the approximation schemes used to approach lattice statistical models that are not exactly solvable. In addition to the mean field approximation, it also considers the Bethe–Peierls approach to the Ising model. Moreover, there is a thorough discussion of the Gaussian model and its spherical version, both of which are two important systems with several points of interest. A chapter appendix provides a detailed analysis of the random walk on different lattices: apart from the importance of the subject on its own, it explains how the random walk is responsible for the critical properties of the spherical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信