水生环境持续监测的数据驱动部署方法

Tauhidul Alam, G. Reis, Leonardo Bobadilla, Ryan N. Smith
{"title":"水生环境持续监测的数据驱动部署方法","authors":"Tauhidul Alam, G. Reis, Leonardo Bobadilla, Ryan N. Smith","doi":"10.1109/IRC.2018.00030","DOIUrl":null,"url":null,"abstract":"Processes of scientific interest in the aquatic environment occur across multiple spatio-temporal time scales. To properly assess and understand these processes, we must observe aquatic ecosystems over long time periods. This requires examination of the problem of deploying multiple, inexpensive, and minimally-actuated drifting vehicles. We aim to utilize these persistent assets to explore all locations on the water surface, and examine the entirety an underwater environment through the visibility of downward-facing cameras. In this work, we propose a data-driven approach for the deployment of drifters that creates a stochastic model, finds the generalized flow pattern of the water, and studies the long-term behavior of an aquatic environment from a flow point-of-view. Given the long-term behavior of the environment, our approach finds attractors and their transient groups as the domains of attractions. We then determine a minimum number of deployment locations for the drifters using these attractors and their transient groups. Our simulation results based on actual ocean model prediction data demonstrate the applicability of our approach.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A Data-Driven Deployment Approach for Persistent Monitoring in Aquatic Environments\",\"authors\":\"Tauhidul Alam, G. Reis, Leonardo Bobadilla, Ryan N. Smith\",\"doi\":\"10.1109/IRC.2018.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processes of scientific interest in the aquatic environment occur across multiple spatio-temporal time scales. To properly assess and understand these processes, we must observe aquatic ecosystems over long time periods. This requires examination of the problem of deploying multiple, inexpensive, and minimally-actuated drifting vehicles. We aim to utilize these persistent assets to explore all locations on the water surface, and examine the entirety an underwater environment through the visibility of downward-facing cameras. In this work, we propose a data-driven approach for the deployment of drifters that creates a stochastic model, finds the generalized flow pattern of the water, and studies the long-term behavior of an aquatic environment from a flow point-of-view. Given the long-term behavior of the environment, our approach finds attractors and their transient groups as the domains of attractions. We then determine a minimum number of deployment locations for the drifters using these attractors and their transient groups. Our simulation results based on actual ocean model prediction data demonstrate the applicability of our approach.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

水生环境的科学兴趣过程发生在多个时空时间尺度上。为了正确评估和理解这些过程,我们必须长期观察水生生态系统。这就需要研究部署多个、廉价且驱动最小的漂移车辆的问题。我们的目标是利用这些持久的资产来探索水面上的所有位置,并通过向下的摄像头的可见性来检查整个水下环境。在这项工作中,我们提出了一种数据驱动的方法,用于部署漂流者,该方法创建了一个随机模型,发现了水的广义流动模式,并从流动的角度研究了水生环境的长期行为。考虑到环境的长期行为,我们的方法发现吸引子和它们的瞬态组作为吸引的域。然后,我们利用这些吸引子和它们的瞬态群体确定漂流者的最小部署位置。基于实际海洋模式预测数据的模拟结果证明了本文方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data-Driven Deployment Approach for Persistent Monitoring in Aquatic Environments
Processes of scientific interest in the aquatic environment occur across multiple spatio-temporal time scales. To properly assess and understand these processes, we must observe aquatic ecosystems over long time periods. This requires examination of the problem of deploying multiple, inexpensive, and minimally-actuated drifting vehicles. We aim to utilize these persistent assets to explore all locations on the water surface, and examine the entirety an underwater environment through the visibility of downward-facing cameras. In this work, we propose a data-driven approach for the deployment of drifters that creates a stochastic model, finds the generalized flow pattern of the water, and studies the long-term behavior of an aquatic environment from a flow point-of-view. Given the long-term behavior of the environment, our approach finds attractors and their transient groups as the domains of attractions. We then determine a minimum number of deployment locations for the drifters using these attractors and their transient groups. Our simulation results based on actual ocean model prediction data demonstrate the applicability of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信