基于机器学习技术的网站污损检测方法

Xuan Dau Hoang
{"title":"基于机器学习技术的网站污损检测方法","authors":"Xuan Dau Hoang","doi":"10.1145/3287921.3287975","DOIUrl":null,"url":null,"abstract":"Website defacement attacks have been one of major threats to websites and web portals of private and public organizations. The attacks can cause serious consequences to website owners, including interrupting the website operations and damaging the owner's reputation, which may lead to big financial losses. A number of techniques have been proposed for website defacement monitoring and detection, such as checksum comparison, diff comparison, DOM tree analysis and complex algorithms. However, some of them only work on static web pages and the others require extensive computational resources. In this paper, we propose a machine learning-based method for website defacement detection. In our method, machine learning techniques are used to build classifiers (detection profile) for page classification into either Normal or Attacked class. As the detection profile can be learned from training data, our method can work well for both static and dynamic web pages. Experimental results show that our approach achieves high detection accuracy of over 93% and low false positive rate of less than 1%. In addition, our method does not require extensive computational resources, so it is practical for online deployment.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Website Defacement Detection Method Based on Machine Learning Techniques\",\"authors\":\"Xuan Dau Hoang\",\"doi\":\"10.1145/3287921.3287975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Website defacement attacks have been one of major threats to websites and web portals of private and public organizations. The attacks can cause serious consequences to website owners, including interrupting the website operations and damaging the owner's reputation, which may lead to big financial losses. A number of techniques have been proposed for website defacement monitoring and detection, such as checksum comparison, diff comparison, DOM tree analysis and complex algorithms. However, some of them only work on static web pages and the others require extensive computational resources. In this paper, we propose a machine learning-based method for website defacement detection. In our method, machine learning techniques are used to build classifiers (detection profile) for page classification into either Normal or Attacked class. As the detection profile can be learned from training data, our method can work well for both static and dynamic web pages. Experimental results show that our approach achieves high detection accuracy of over 93% and low false positive rate of less than 1%. In addition, our method does not require extensive computational resources, so it is practical for online deployment.\",\"PeriodicalId\":448008,\"journal\":{\"name\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3287921.3287975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

网站污损攻击已经成为私营和公共机构网站和门户网站的主要威胁之一。这些攻击会给网站所有者造成严重的后果,包括中断网站运营和损害网站所有者的声誉,这可能会导致巨大的经济损失。针对网站污损的监测和检测,人们提出了校验和比较、差分比较、DOM树分析和复杂算法等技术。然而,其中一些只在静态网页上工作,而另一些则需要大量的计算资源。在本文中,我们提出了一种基于机器学习的网站污损检测方法。在我们的方法中,机器学习技术用于构建分类器(检测配置文件),用于将页面分类为正常或受攻击类。由于检测轮廓可以从训练数据中学习,因此我们的方法可以很好地用于静态和动态网页。实验结果表明,该方法的检测准确率高达93%以上,假阳性率低于1%。此外,我们的方法不需要大量的计算资源,因此适合在线部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Website Defacement Detection Method Based on Machine Learning Techniques
Website defacement attacks have been one of major threats to websites and web portals of private and public organizations. The attacks can cause serious consequences to website owners, including interrupting the website operations and damaging the owner's reputation, which may lead to big financial losses. A number of techniques have been proposed for website defacement monitoring and detection, such as checksum comparison, diff comparison, DOM tree analysis and complex algorithms. However, some of them only work on static web pages and the others require extensive computational resources. In this paper, we propose a machine learning-based method for website defacement detection. In our method, machine learning techniques are used to build classifiers (detection profile) for page classification into either Normal or Attacked class. As the detection profile can be learned from training data, our method can work well for both static and dynamic web pages. Experimental results show that our approach achieves high detection accuracy of over 93% and low false positive rate of less than 1%. In addition, our method does not require extensive computational resources, so it is practical for online deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信