{"title":"有理稀疏性提升准则的全局优化方法","authors":"M. Castella, J. Pesquet","doi":"10.23919/EUSIPCO.2017.8081188","DOIUrl":null,"url":null,"abstract":"We consider the problem of recovering an unknown signal observed through a nonlinear model and corrupted with additive noise. More precisely, the nonlinear degradation consists of a convolution followed by a nonlinear rational transform. As a prior information, the original signal is assumed to be sparse. We tackle the problem by minimizing a least-squares fit criterion penalized by a Geman-McClure like potential. In order to find a globally optimal solution to this rational minimization problem, we transform it in a generalized moment problem, for which a hierarchy of semidefinite programming relaxations can be used. To overcome computational limitations on the number of involved variables, the structure of the problem is carefully addressed, yielding a sparse relaxation able to deal with up to several hundreds of optimized variables. Our experiments show the good performance of the proposed approach.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A global optimization approach for rational sparsity promoting criteria\",\"authors\":\"M. Castella, J. Pesquet\",\"doi\":\"10.23919/EUSIPCO.2017.8081188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of recovering an unknown signal observed through a nonlinear model and corrupted with additive noise. More precisely, the nonlinear degradation consists of a convolution followed by a nonlinear rational transform. As a prior information, the original signal is assumed to be sparse. We tackle the problem by minimizing a least-squares fit criterion penalized by a Geman-McClure like potential. In order to find a globally optimal solution to this rational minimization problem, we transform it in a generalized moment problem, for which a hierarchy of semidefinite programming relaxations can be used. To overcome computational limitations on the number of involved variables, the structure of the problem is carefully addressed, yielding a sparse relaxation able to deal with up to several hundreds of optimized variables. Our experiments show the good performance of the proposed approach.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A global optimization approach for rational sparsity promoting criteria
We consider the problem of recovering an unknown signal observed through a nonlinear model and corrupted with additive noise. More precisely, the nonlinear degradation consists of a convolution followed by a nonlinear rational transform. As a prior information, the original signal is assumed to be sparse. We tackle the problem by minimizing a least-squares fit criterion penalized by a Geman-McClure like potential. In order to find a globally optimal solution to this rational minimization problem, we transform it in a generalized moment problem, for which a hierarchy of semidefinite programming relaxations can be used. To overcome computational limitations on the number of involved variables, the structure of the problem is carefully addressed, yielding a sparse relaxation able to deal with up to several hundreds of optimized variables. Our experiments show the good performance of the proposed approach.