一种新的用于计算机视觉参数优化的自适应离散布谷鸟搜索算法

L. Benchikhi, M. Sadgal, A. E. Fazziki, Fatimaezzahra Mansouri
{"title":"一种新的用于计算机视觉参数优化的自适应离散布谷鸟搜索算法","authors":"L. Benchikhi, M. Sadgal, A. E. Fazziki, Fatimaezzahra Mansouri","doi":"10.4114/INTARTIF.VOL20ISS60PP51-71","DOIUrl":null,"url":null,"abstract":"Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS) is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO), reinforcement learning (RL) and ant colony optimization (ACO) show the efficiency of this novel method.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision\",\"authors\":\"L. Benchikhi, M. Sadgal, A. E. Fazziki, Fatimaezzahra Mansouri\",\"doi\":\"10.4114/INTARTIF.VOL20ISS60PP51-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS) is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO), reinforcement learning (RL) and ant colony optimization (ACO) show the efficiency of this novel method.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/INTARTIF.VOL20ISS60PP51-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/INTARTIF.VOL20ISS60PP51-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

计算机视觉应用需要选择操作员及其参数,以提供最佳结果。通常情况下,用户需要专业知识,并且必须尝试多种组合才能手动找到最佳组合。由于性能、时间和精度都很重要,因此至少对于关键操作人员来说,有必要实现参数优化的自动化。提出了一种基于自适应离散布谷鸟搜索算法(ADCS)的自适应离散布谷鸟搜索算法。实现了算法设置过程的自动化,为视觉应用提供了最优参数。本文重新考虑了一个离散化问题,以适应布谷鸟搜索算法,并给出了参数优化的过程。实例实验和与其他基于元启发式算法的粒子群优化(PSO)、强化学习(RL)和蚁群优化(ACO)的比较表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision
Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS) is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO), reinforcement learning (RL) and ant colony optimization (ACO) show the efficiency of this novel method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信