机器学习算法对宏基因组基因预测的影响

Amani A. Al-Ajlan, Achraf El Allali
{"title":"机器学习算法对宏基因组基因预测的影响","authors":"Amani A. Al-Ajlan, Achraf El Allali","doi":"10.1145/3309129.3309136","DOIUrl":null,"url":null,"abstract":"The development of next generation sequencing facilitates the study of metagenomics. Computational gene prediction aims to find the location of genes in a given DNA sequence. Gene prediction in metagenomics is a challenging task because of the short and fragmented nature of the data. Our previous framework minimum redundancy maximum relevance - support vector machines (mRMR-SVM) produced promising results in metagenomics gene prediction. In this paper, we review available metagenomics gene prediction programs and study the effect of the machine learning approach on gene prediction by altering the underlining machine learning algorithm in our previous framework. Overall, SVM produces the highest accuracy based on tests performed on a simulated dataset.","PeriodicalId":326530,"journal":{"name":"Proceedings of the 5th International Conference on Bioinformatics Research and Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect of Machine Learning Algorithms on Metagenomics Gene Prediction\",\"authors\":\"Amani A. Al-Ajlan, Achraf El Allali\",\"doi\":\"10.1145/3309129.3309136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of next generation sequencing facilitates the study of metagenomics. Computational gene prediction aims to find the location of genes in a given DNA sequence. Gene prediction in metagenomics is a challenging task because of the short and fragmented nature of the data. Our previous framework minimum redundancy maximum relevance - support vector machines (mRMR-SVM) produced promising results in metagenomics gene prediction. In this paper, we review available metagenomics gene prediction programs and study the effect of the machine learning approach on gene prediction by altering the underlining machine learning algorithm in our previous framework. Overall, SVM produces the highest accuracy based on tests performed on a simulated dataset.\",\"PeriodicalId\":326530,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Bioinformatics Research and Applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3309129.3309136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3309129.3309136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

下一代测序技术的发展促进了宏基因组学的研究。计算基因预测的目的是在给定的DNA序列中找到基因的位置。宏基因组学的基因预测是一项具有挑战性的任务,因为数据的短和碎片性。我们之前的框架最小冗余最大相关-支持向量机(mRMR-SVM)在宏基因组基因预测中取得了很好的结果。在本文中,我们回顾了现有的宏基因组学基因预测程序,并通过改变我们之前框架中强调的机器学习算法来研究机器学习方法对基因预测的影响。总体而言,基于在模拟数据集上执行的测试,SVM产生最高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Machine Learning Algorithms on Metagenomics Gene Prediction
The development of next generation sequencing facilitates the study of metagenomics. Computational gene prediction aims to find the location of genes in a given DNA sequence. Gene prediction in metagenomics is a challenging task because of the short and fragmented nature of the data. Our previous framework minimum redundancy maximum relevance - support vector machines (mRMR-SVM) produced promising results in metagenomics gene prediction. In this paper, we review available metagenomics gene prediction programs and study the effect of the machine learning approach on gene prediction by altering the underlining machine learning algorithm in our previous framework. Overall, SVM produces the highest accuracy based on tests performed on a simulated dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信