热红外车载视频中行人地面真实度的半自动生成方法

Xinyan He, Shaowu Peng, Qiong Liu
{"title":"热红外车载视频中行人地面真实度的半自动生成方法","authors":"Xinyan He, Shaowu Peng, Qiong Liu","doi":"10.1109/IST.2015.7294545","DOIUrl":null,"url":null,"abstract":"Currently, pedestrian detection and tracking algorithms of Thermal Infrared (TIR) on-board videos encounter lack of comprehensive pedestrian datasets for benchmarking. The generation of ground truth is a tedious and error-prone task in the process of creating the dataset of annotated videos. This paper puts forward a novel semiautomatic video annotation method to facilitate annotating pedestrians in TIR on-board videos. The proposed method consists of two phases. In the first phase we learn the pedestrian appearance models online, then in the second phase we use the learned models to automatically annotate the pedestrian in the other frames. We present a video annotation tool to verify the effectiveness and reliability of our method. A comparison between our tool and the state of the art of onboard video annotating tools was performed, which showed how our annotation tool provides a high ground truth quality with shorter annotation time when annotating pedestrians in TIR on-board videos with bounding boxes.","PeriodicalId":186466,"journal":{"name":"2015 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A semiautomatic method for pedestrian ground truth generation in thermal infrared on-board videos\",\"authors\":\"Xinyan He, Shaowu Peng, Qiong Liu\",\"doi\":\"10.1109/IST.2015.7294545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, pedestrian detection and tracking algorithms of Thermal Infrared (TIR) on-board videos encounter lack of comprehensive pedestrian datasets for benchmarking. The generation of ground truth is a tedious and error-prone task in the process of creating the dataset of annotated videos. This paper puts forward a novel semiautomatic video annotation method to facilitate annotating pedestrians in TIR on-board videos. The proposed method consists of two phases. In the first phase we learn the pedestrian appearance models online, then in the second phase we use the learned models to automatically annotate the pedestrian in the other frames. We present a video annotation tool to verify the effectiveness and reliability of our method. A comparison between our tool and the state of the art of onboard video annotating tools was performed, which showed how our annotation tool provides a high ground truth quality with shorter annotation time when annotating pedestrians in TIR on-board videos with bounding boxes.\",\"PeriodicalId\":186466,\"journal\":{\"name\":\"2015 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2015.7294545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2015.7294545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,热红外(TIR)车载视频的行人检测和跟踪算法缺乏全面的行人数据集进行基准测试。在创建带注释视频数据集的过程中,ground truth的生成是一项繁琐且容易出错的任务。为了方便对TIR车载视频中的行人进行标注,提出了一种新的半自动视频标注方法。该方法分为两个阶段。在第一阶段,我们在线学习行人外观模型,然后在第二阶段,我们使用学习到的模型自动标注其他帧中的行人。为了验证该方法的有效性和可靠性,我们给出了一个视频标注工具。将我们的工具与最先进的车载视频注释工具进行了比较,这表明我们的注释工具在对带有边界框的TIR车载视频中的行人进行注释时,如何以更短的注释时间提供更高的地面真实质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semiautomatic method for pedestrian ground truth generation in thermal infrared on-board videos
Currently, pedestrian detection and tracking algorithms of Thermal Infrared (TIR) on-board videos encounter lack of comprehensive pedestrian datasets for benchmarking. The generation of ground truth is a tedious and error-prone task in the process of creating the dataset of annotated videos. This paper puts forward a novel semiautomatic video annotation method to facilitate annotating pedestrians in TIR on-board videos. The proposed method consists of two phases. In the first phase we learn the pedestrian appearance models online, then in the second phase we use the learned models to automatically annotate the pedestrian in the other frames. We present a video annotation tool to verify the effectiveness and reliability of our method. A comparison between our tool and the state of the art of onboard video annotating tools was performed, which showed how our annotation tool provides a high ground truth quality with shorter annotation time when annotating pedestrians in TIR on-board videos with bounding boxes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信