基于人工智能技术的电信网络绩效管理系统

Shaoyan Zhang, Rui Zhang, Jianmin Jiang
{"title":"基于人工智能技术的电信网络绩效管理系统","authors":"Shaoyan Zhang, Rui Zhang, Jianmin Jiang","doi":"10.1109/DepCoS-RELCOMEX.2008.32","DOIUrl":null,"url":null,"abstract":"Anomaly detection has become more and more difficult for telecommunication network due to the various trends of networking technologies and the growing number of unauthorized activities in the performance data. This paper builds up a performance management system based on the one-class-support vector machine (OCSVM) and k-means clustering algorithm, which achieves not only the automatic detection of network anomalies but also the clustering of the anomalies with different levels. The OCSVM detects the anomalies by solving an optimal problem to separate the nominal data from the anomalies; these detected anomalies are then classified into minor, medium and severe levels using k-means clustering. The real telecommunication performance data are employed in this paper for the investigation, and the numerical results demonstrate the promising performance of this system.","PeriodicalId":167937,"journal":{"name":"2008 Third International Conference on Dependability of Computer Systems DepCoS-RELCOMEX","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Performance Management System for Telecommunication Network Using AI Techniques\",\"authors\":\"Shaoyan Zhang, Rui Zhang, Jianmin Jiang\",\"doi\":\"10.1109/DepCoS-RELCOMEX.2008.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection has become more and more difficult for telecommunication network due to the various trends of networking technologies and the growing number of unauthorized activities in the performance data. This paper builds up a performance management system based on the one-class-support vector machine (OCSVM) and k-means clustering algorithm, which achieves not only the automatic detection of network anomalies but also the clustering of the anomalies with different levels. The OCSVM detects the anomalies by solving an optimal problem to separate the nominal data from the anomalies; these detected anomalies are then classified into minor, medium and severe levels using k-means clustering. The real telecommunication performance data are employed in this paper for the investigation, and the numerical results demonstrate the promising performance of this system.\",\"PeriodicalId\":167937,\"journal\":{\"name\":\"2008 Third International Conference on Dependability of Computer Systems DepCoS-RELCOMEX\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Third International Conference on Dependability of Computer Systems DepCoS-RELCOMEX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DepCoS-RELCOMEX.2008.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Dependability of Computer Systems DepCoS-RELCOMEX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DepCoS-RELCOMEX.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于网络技术的各种发展趋势和性能数据中非法活动的增多,电信网络异常检测变得越来越困难。本文构建了一个基于一类支持向量机(OCSVM)和k-means聚类算法的性能管理系统,不仅实现了网络异常的自动检测,而且实现了不同级别异常的聚类。OCSVM通过求解一个将标称数据与异常数据分离的最优问题来检测异常;然后使用k-means聚类将这些检测到的异常分为轻微、中等和严重级别。本文采用实际的通信性能数据进行了研究,数值结果表明该系统具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Performance Management System for Telecommunication Network Using AI Techniques
Anomaly detection has become more and more difficult for telecommunication network due to the various trends of networking technologies and the growing number of unauthorized activities in the performance data. This paper builds up a performance management system based on the one-class-support vector machine (OCSVM) and k-means clustering algorithm, which achieves not only the automatic detection of network anomalies but also the clustering of the anomalies with different levels. The OCSVM detects the anomalies by solving an optimal problem to separate the nominal data from the anomalies; these detected anomalies are then classified into minor, medium and severe levels using k-means clustering. The real telecommunication performance data are employed in this paper for the investigation, and the numerical results demonstrate the promising performance of this system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信