神经图协同过滤在电影推荐系统中的应用

Ying-Chun Hou
{"title":"神经图协同过滤在电影推荐系统中的应用","authors":"Ying-Chun Hou","doi":"10.1109/ICETCI53161.2021.9563481","DOIUrl":null,"url":null,"abstract":"With the gradual development of movie recommendation system, in order to improve the recommendation effect of movie recommendation system, we must learn how to get a more effective embedding. The main purpose of this paper is to combine the neural graph collaborative filtering with the movie recommendation system. It utilizes the user-item graph data by propagating embeddings on it. Owing to the method, the expressive modeling of high-order connectivity in user-item graph could injecting the collaborative signal into the embedding process in an clear way. We make a large number of experiments on MovieLens dataset, and verified the effectiveness and correctness of the algorithms we used.","PeriodicalId":170858,"journal":{"name":"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Neural Graph Collaborative Filtering in Movie Recommendation System\",\"authors\":\"Ying-Chun Hou\",\"doi\":\"10.1109/ICETCI53161.2021.9563481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the gradual development of movie recommendation system, in order to improve the recommendation effect of movie recommendation system, we must learn how to get a more effective embedding. The main purpose of this paper is to combine the neural graph collaborative filtering with the movie recommendation system. It utilizes the user-item graph data by propagating embeddings on it. Owing to the method, the expressive modeling of high-order connectivity in user-item graph could injecting the collaborative signal into the embedding process in an clear way. We make a large number of experiments on MovieLens dataset, and verified the effectiveness and correctness of the algorithms we used.\",\"PeriodicalId\":170858,\"journal\":{\"name\":\"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETCI53161.2021.9563481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETCI53161.2021.9563481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着电影推荐系统的逐步发展,为了提高电影推荐系统的推荐效果,我们必须学习如何获得更有效的嵌入。本文的主要目的是将神经图协同过滤与电影推荐系统相结合。它通过在其上传播嵌入来利用用户项图数据。该方法通过对用户-物品图高阶连通性的表达建模,将协作信号清晰地注入嵌入过程中。我们在MovieLens数据集上进行了大量的实验,验证了算法的有效性和正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Neural Graph Collaborative Filtering in Movie Recommendation System
With the gradual development of movie recommendation system, in order to improve the recommendation effect of movie recommendation system, we must learn how to get a more effective embedding. The main purpose of this paper is to combine the neural graph collaborative filtering with the movie recommendation system. It utilizes the user-item graph data by propagating embeddings on it. Owing to the method, the expressive modeling of high-order connectivity in user-item graph could injecting the collaborative signal into the embedding process in an clear way. We make a large number of experiments on MovieLens dataset, and verified the effectiveness and correctness of the algorithms we used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信