利用信赖域和线搜索技术求解非线性方程组的鲁棒算法

M. Kabir
{"title":"利用信赖域和线搜索技术求解非线性方程组的鲁棒算法","authors":"M. Kabir","doi":"10.1504/ijcsm.2020.10028095","DOIUrl":null,"url":null,"abstract":"Newton's method is an attractive method for solving nonlinear system of equations because of its fast convergence property. However, Newton's method may fail if the Jacobian matrices are singular. Newton's method with trust-region can be used to avoid such problem. In this work, a new trust-region technique for Newton's method was formulated to solve the nonlinear system of equations. The search direction in this method is computed by a sequence of factorisations of the Jacobian matrix with modified structure using a Lagrange multiplier associated with trust-region constraint such that the final modified Jacobian turns out to be well-conditioned (regularised). An optimal Lagrange multiplier was deduced using the same idea of unconstrained optimisation to satisfy the trust-region constraint. Furthermore, Armijo line-search technique is integrated with the method in order to improve the step length. Numerical tests were conducted to investigate the performance of Newton's method integrated with trust-region and line-search techniques.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A robust algorithm for solving nonlinear system of equations using trust-region and line-search techniques\",\"authors\":\"M. Kabir\",\"doi\":\"10.1504/ijcsm.2020.10028095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Newton's method is an attractive method for solving nonlinear system of equations because of its fast convergence property. However, Newton's method may fail if the Jacobian matrices are singular. Newton's method with trust-region can be used to avoid such problem. In this work, a new trust-region technique for Newton's method was formulated to solve the nonlinear system of equations. The search direction in this method is computed by a sequence of factorisations of the Jacobian matrix with modified structure using a Lagrange multiplier associated with trust-region constraint such that the final modified Jacobian turns out to be well-conditioned (regularised). An optimal Lagrange multiplier was deduced using the same idea of unconstrained optimisation to satisfy the trust-region constraint. Furthermore, Armijo line-search technique is integrated with the method in order to improve the step length. Numerical tests were conducted to investigate the performance of Newton's method integrated with trust-region and line-search techniques.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcsm.2020.10028095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.10028095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

牛顿法因其快速收敛的特性而成为求解非线性方程组的一种有吸引力的方法。然而,如果雅可比矩阵是奇异的,牛顿法可能会失效。带信任域的牛顿方法可以避免这类问题。本文提出了求解非线性方程组的牛顿法的一种新的信赖域技术。该方法的搜索方向是通过使用与信任域约束相关的拉格朗日乘子对具有修正结构的雅可比矩阵进行一系列分解来计算的,从而使最终的修正雅可比矩阵成为条件良好的(正则化的)。利用与无约束优化相同的思想,推导出满足信赖域约束的最优拉格朗日乘子。在此基础上,结合Armijo线搜索技术,提高了算法的步长。通过数值实验研究了牛顿方法与信赖域和直线搜索技术相结合的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust algorithm for solving nonlinear system of equations using trust-region and line-search techniques
Newton's method is an attractive method for solving nonlinear system of equations because of its fast convergence property. However, Newton's method may fail if the Jacobian matrices are singular. Newton's method with trust-region can be used to avoid such problem. In this work, a new trust-region technique for Newton's method was formulated to solve the nonlinear system of equations. The search direction in this method is computed by a sequence of factorisations of the Jacobian matrix with modified structure using a Lagrange multiplier associated with trust-region constraint such that the final modified Jacobian turns out to be well-conditioned (regularised). An optimal Lagrange multiplier was deduced using the same idea of unconstrained optimisation to satisfy the trust-region constraint. Furthermore, Armijo line-search technique is integrated with the method in order to improve the step length. Numerical tests were conducted to investigate the performance of Newton's method integrated with trust-region and line-search techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信